

Name: _____

Number Theory Review

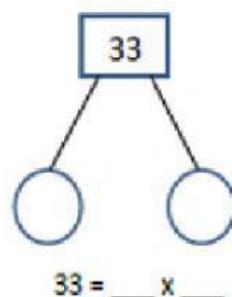
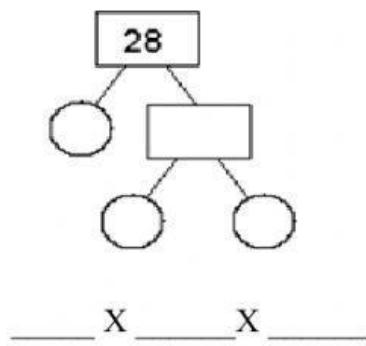
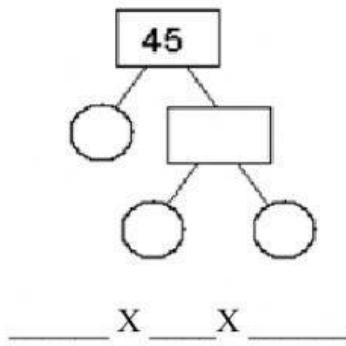
Classify each number as prime or composite. Example: 2 = prime

1. 32 = _____ 2. 47 = _____ 3. 55 = _____

If the first number is divisible by the second number write yes.

4. 345 by 3 _____ 5. 734 by 2 _____ 6. 750 by 5 _____

List all of the factors of each number. Example $33 = 1, 3, 11, 33$




7. $32 =$ _____ 8. $16 =$ _____ 9. $24 =$ _____

List 5 multiples of the following. (4: 4, 8, 12, 16, 20)

10. 8: _____ [11] 3: _____

Find the prime factorization of each number. Use a factor tree. Example

$$\begin{array}{c} 8 \\ \swarrow \quad \searrow \\ 2 \quad 4 \\ \swarrow \quad \searrow \\ 2 \quad 2 \end{array} = 2 \times 2 \times 2 = 2^3$$

Find the greatest common factor of each set of numbers. $28 = 1, 2, 4, 7, 14, 28$ and $44 = 1, 2, 4, 11, 22, 44$ = GCF = 4

13. $4 =$ _____ 14. $6 =$ _____ 15. $3 =$ _____

14. $14 =$ _____ 28 = _____ 10. $39 =$ _____

GCF = _____ GCF = _____ GCF = _____

Find the least common multiple. $3 = 3, 6, 9, 12, 15, 18$ and $5 = 5, 10, 15, 20 =$ LCM = 15

16. $4 =$ _____ 17. $5 =$ _____ 18. $4 =$ _____

8 = _____ 10 = _____ 12 = _____

LCM = _____ LCM = _____ LCM = _____