THE BINOMIAL THEOREM:

8 Multiple choice questions

	I. W	hat is the 4th term of $(x+2y)^{10}$?
	0	A formula for finding any power of a binomial without multiplying at length.
	0	$960x^7y^3$
	0	12xy ⁵
	0	$x^3 + 3x^2y + 3xy^2 + y^3$
2.	Wh	at is the expansion of $(x+y)^3$?
	0	$x^3 + 3x^2y + 3xy^2 + y^3$
	0	$960x^{7}y^{3}$
	0	12×y ⁵
	0	A formula for finding any power of a binomial without multiplying at length.
3.	Wh	at are the coefficients of the row on Pascal's triangle for the expansion of (a+b) raised to the 9th power?
	0	A formula for finding any power of a binomial without multiplying at length.
	0	$x^3 + 3x^2y + 3xy^2 + y^3$
	0	$960x^7y^3$
	0	1 9 36 84 126 126 84 36 9 1

4.	How do	vou find	the next	row in t	the Pascal	's Triangle?

- O Addition. Each number is the number directly above it added together.
- 0 1, 9, 36, 84, 126, 126, 84, 36, 9, 1
- $\bigcirc x^3 + 3x^2y + 3xy^2 + y^3$
- O A formula for finding any power of a binomial without multiplying at length.

5. What is the 6th term of $(2x+y)^6$?

- O 12xy5
- 960x⁷y³
- O A formula for finding any power of a binomial without multiplying at length.
- $0 x^3 + 3x^2y + 3xy^2 + y^3$

6. What is the Binomial Theorem?

- 960x⁷y³
- $\bigcirc x^3 + 3x^2y + 3xy^2 + y^3$
- O 12xy5
- A formula for finding any power of a binomial without multiplying at length.

7. Expand (a-b)5

- Addition. Each number is the number directly above it added together.
- $\bigcirc x^3 + 3x^2y + 3xy^2 + y^3$

$$a^5-5a^4b+10a^3b^2-10a^2b^3+6ab^4-b^5$$

Powers of a decrease

O Powers of b increase

Coefficients are 1,5,10,10,5,1 from 5th row of Pascal's triangle

-b makes the odd powers of b negative

A formula for finding any power of a binomial without multiplying at length.

wn	vnat is the Binomial Coemcient formula?						
0	A formula for finding any power of a binomial without multiplying at length.						
0							
0	12xy ^s						
0	960x ⁷ y ³						