

Oxygen dissociation Curve (ODC)

- Shows the relationship between percentage of _____ saturation with _____ at different partial pressure of _____
- _____ curve is obtained when the percentage oxygen saturation of Hb is plotted against the partial pressure of O_2
- When the partial pressure of _____ in the lung is _____ (~ 100 mmHg), _____ can be saturated with O_2 up to 98%
- It can't reach 100% because some O_2 will dissolve into the _____
- When blood leaves _____ & move towards _____, P_{O_2} _____ from 100 to 40 mmHg (in most tissues during resting condition)
- Hb has a _____ affinity for O_2 and _____ some of its _____ to the tissues
- When Hb leaves the tissues, it is still 75% saturated
- In _____ contracting muscle, P_{O_2} _____ from 40 to 20mmHg
- The tendency of _____ to release O_2 is _____
- The percentage of O_2 saturated with Hb will _____
- This is shown by the _____ part of curve
- At _____ P_{O_2} (20mmHg), Hb is only about 35% saturated
- When the P_{O_2} reduces below 20mmHg, more HbO_2 will _____ its O_2