

TASK 1. Match each situation with the correct reason for writing the report.

Situation	Reason / Category
1. a conveyor motor stopped during operation and was repaired	a. safety & compliance update
2. a protective shield caused a minor injury	b. problem investigation & root cause analysis
3. a control panel was replaced with a modern interface	c. repair & maintenance
4. a system was upgraded to meet environmental standards	d. quality improvement
5. a batch of products had defects due to a sensor error	e. equipment upgrade & modernisation

TASK 2. Below are four statements from a maintenance report. Your task is to match each statement with the correct stage.**Problem Description / Action Taken / Testing & Verification / Conclusion**

The equipment is now fully operational and complies with safety standards. (1) _____

The issue was first identified during a routine inspection. (2) _____

The system was tested under full operational load for 24 hours. (3) _____

The faulty pressure valve was removed and replaced with a certified unit. (4) _____

Task 3. Match the verb with the appropriate noun phrase to form Technical Maintenance Collocations.

Verb	Noun Phrase
1. Carry out	A. production downtime
2. File	B. safety regulations
3. Reduce	C. a warranty claim
4. Upgrade	D. regular maintenance
5. Document	E. all repairs and replacements
6. Comply with	F. the root cause of failure
7. Identify	G. diagnostic tests
8. Schedule	H. the control system

TASK 4. Complete the sentences using the correct verb.

monitored / inspected / tested / secured / replaced / programmed / calibrated / adjusted / repaired / activated

1. The robotic arm was _____ to handle heavier components.
2. All safety guards have been _____ before the system restart.
3. The pressure settings were _____ to ensure stable operation.
4. The emergency lighting system was _____ after installation.
5. Loose electrical cables were _____ to prevent accidents.
6. The root cause of the failure has been _____ by the engineering team.
7. The faulty circuit board has been _____ immediately.
8. Loose bolts were _____ to eliminate vibration.
9. The damaged section of wiring was _____.
10. Normal system operation was _____ after testing.

Task 5. Read each repair scenario. Choose the correct verb form from the brackets to complete the passive sentences.

1. The faulty sensor (**was replaced / has been replaced / is being replaced**) during the night shift yesterday.
2. The broken conveyor belt (**was just repaired / has just been repaired / is being repaired**) and the production line is now moving again.
3. A serious leak in the hydraulic system (**is analyzed / will be analyzed / is being analyzed**) by the engineering team as we speak.
4. According to the schedule, the entire facility (**is inspected / will be inspected / was inspected**) for safety compliance next Monday.
5. The control panel (**has been upgraded / was upgraded / is being upgraded**) to a digital interface three months ago.
6. So far, all the emergency exits (**were checked / have been checked / are being checked**), but the fire alarms are still on the list.
7. Currently, the old bearings (**are replaced / were being replaced / are being replaced**) to reduce friction and noise in the rotating drum.
8. New safety protocols (**will be introduced / were introduced / are being introduced**) once the technician completes the training session tomorrow.
9. The thermodynamics module (**was already calibrated / has already been calibrated / is already calibrated**), so the temperature readings are now accurate.
10. The structural integrity of the main pillar (**is being tested / will be tested / was tested**) right now using ultrasonic equipment.

Task 6. Fill in the gaps with the correct option.

Technical Maintenance Report #2026-042

Date: February 14, 2026

Department: Industrial Engineering

Lead Engineer: Tom Boston

1. Problem Description. The incident (1) _____ during a routine inspection of the main production line. A primary conveyor motor experienced a sudden breakdown. Initial quantitative analysis indicated that the system's thermodynamics module was overheating due to a blockage.

2. Action Taken. The faulty motor (2) _____, and the internal components (3) _____ for root cause analysis. It was found that the bearings were worn down. Consequently, the old bearings (4) _____ with high-precision units. Additionally, the control software (5) _____ to a modern digital interface to break new ground in monitoring.

3. Testing & Verification. Currently, the structural integrity of the motor mounts (6) _____ using statics principles. The system (7) _____ at this moment to ensure all sensor readings are accurate.

4. Conclusion & Future Steps. In the long run, these improvements will reduce production downtime. The final safety audit (8) _____ tomorrow morning. Once completed, the equipment (9) _____ with new safety guards to comply with current regulations. So far, most of the secondary systems (10) _____, but the final testing phase is still ongoing.