

Balance the Sun's Energy

LIVEWORKSHEETS

LEARNING POINTS

- Simple calorimetry experiments are described.
- Energy changes in chemical reactions are determined and calculated.
- Specific heat capacity and molar enthalpy change are applied.

ΔH

Enthalpy change

is the amount of heat energy given out or taken in during a chemical reaction. It tells you whether a reaction gets hot or cold.

- **Negative ΔH** means the reaction gives out heat and feels hot.
This is an exothermic reaction.
- **Positive ΔH** means the reaction takes in heat and feels cold.
This is an endothermic reaction.

ΔH

Measuring Enthalpy Changes of Reaction

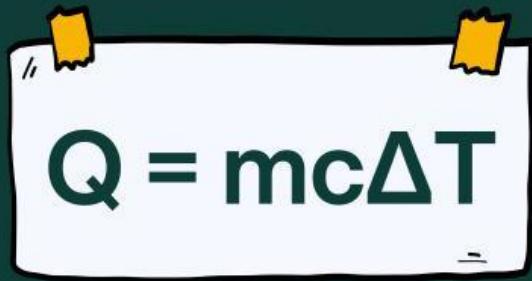
- Enthalpy change, or ΔH , is the total amount of heat released or absorbed during a chemical reaction. It tells us whether a reaction gets hotter or colder.
- We can't measure ΔH directly, so we use a simple device called a calorimeter.

Keyterm:

- **Specific Heat Capacity (c):** The amount of energy needed to heat up 1 gram of a substance by 1°C.
- **Calorimetry:** The process of measuring the heat change in a reaction.
- **Calorimeter:** A device, like an insulated cup, used to measure heat changes.
- **Molar Enthalpy Change:** The energy change for one mole of a substance in a reaction.

Specific Heat Capacity (c)

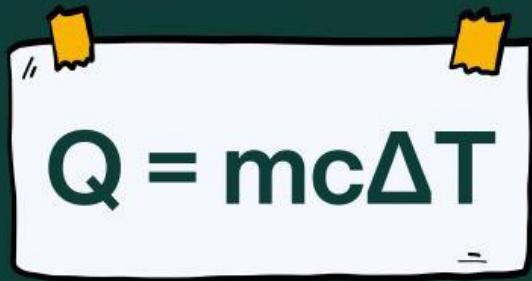
When we heat something, it gets


Hotter

Example:

The specific heat capacity of water is approximately 4.18J/g°C. This means it takes 4.18 joules of energy to raise the temperature of 1 gram of water by 1°C.

Specific Heat Capacity (c)


The formula to calculate the energy change (Q) for a substance based on its specific heat capacity is:

$$Q = mc\Delta T$$

- Q is the energy absorbed or released in joules (J).
- m is the mass of the substance in grams (g).
- c is the specific heat capacity of the substance in J/g°C.
- ΔT (delta T) is the change in temperature in degrees Celsius (°C) or Kelvin (K).

Specific Heat Capacity (c)

The formula to calculate the energy change (Q) for a substance based on its specific heat capacity is:

$$Q = mc\Delta T$$

- Calorimetry is the scientific technique used to measure heat changes. The word comes from Latin and Greek roots: calor meaning "heat" and metry meaning "to measure."
- to quantify the amount of heat energy (Q) that is either absorbed (in an endothermic process) or released (in an exothermic process).

Specific Heat Capacity (c)

The change in temperature, ΔT , is calculated as:

$$\Delta T = T_{\text{final}} - T_{\text{initial}}$$

- positive ΔT indicates an increase in temperature,
- negative ΔT indicates a decrease in temperature

Specific Heat Capacity (c)

The formula to calculate the energy change (Q) for a substance based on its specific heat capacity is:

$$\Delta H = Q / n$$

- find the value of Q,
- then used to find the enthalpy change (ΔH) of the reaction.
- n = numbers of moles
- n = mass (m) / relative molecular mass (M_r)