Lembaran kerja 3.3 Electromotive force and internal resistance

- An electrical circuit is set up as shown in figure (a). A high resistance voltmeter is connected across a dry cell which labeled 1.5 V.
- a) Figure (a) is (an open circuit / a closed circuit)
- b) There is (current flowing / no current flowing) in the circuit. The bulb (does not light up / lights up)
- c) The voltmeter reading shows the (amount of current flow across the dry cell / potential difference across the dry cell)
- d) The voltmeter reading is (0 V / 1.5 V / Less than 1.5 V)
- e) The potential difference across the cell in open circuit is (0 V / 1.5 V / Less than 1.5 V). Hence, the electromotive force, e.m.f., E is (0 V / 1.5 V / Less than 1.5 V)
- f) It means, (0 J / less than 1.5 J / 1.5 J / 3.0 J) of electrical energy is required to move 1 C charge across the cell or around a complete circuit.

- 2. The switch is then closed as shown in figure (b).
- a) Figure (b) is (an open circuit / a closed circuit)
- b) There is (current flowing / no current flowing) in the circuit. The bulb (does not light up / lights up)
- c) The voltmeter reading is the (potential difference across the dry cell / potential difference across the bulb / electromotive force).
- d) The reading of the voltmeter when the switch is closed is (lower than/ the same as / higher than) when the switch is open.
- e) If the voltmeter reading in figure (b) is 1.3 V, it means, the electrical energy dissipated by 1C of charge after passing through the bulb is (0.2 J / 1.3 J / 1.5 J)
- f) The potential difference drops by (0.2 V/ 1.3 V / 1.5 V). It means, the potential difference lost across the internal resistance, r of the dry cell is (0.2 V/ 1.3 V / 1.5 V).

3.

- b) Determine the value of the internal resistance.

Since E = V + Ir

. = . + . .

Therefore, the value of the internal resistance is $\ \ . \ \ \ \Omega$

c) Determine the value of the external resistor.

Since	V	=	IR	
	10	=	3	R
	R	=		\square_{Ω}

Therefore, the value of the external resistance is $\ \ .$ $\ \ \Omega$