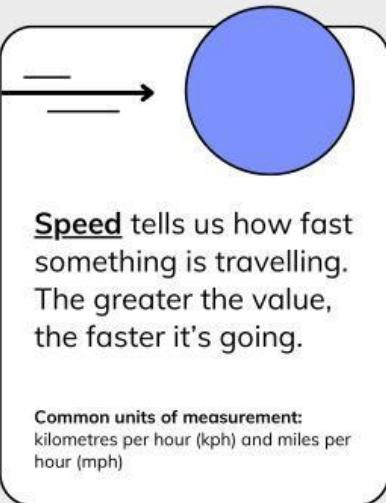

SIDEWO (Physics Student Worksheet)

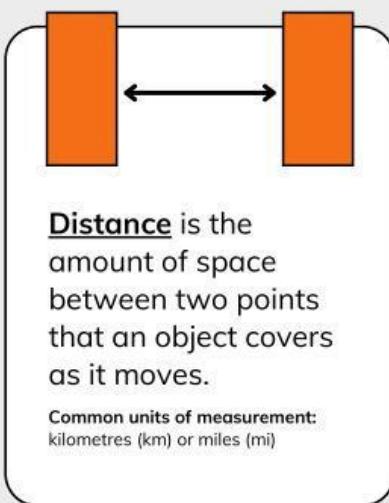
Defining speed,
distance and time

How are the
three related?

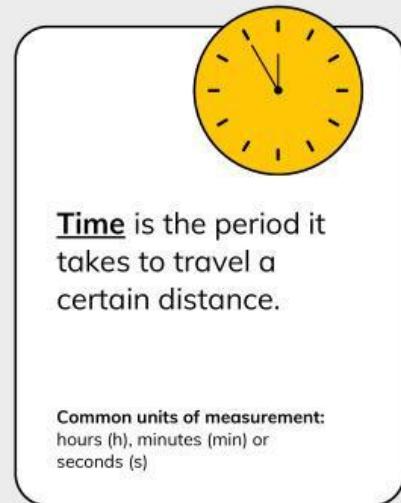
Solving worded
problems


Producing a table
of values

Tujuan Pembelajaran


- a. Peserta didik mampu mengetahui dan menganalisis fenomena pemanasan global dan efek rumah kaca.
- b. Peserta didik menganalisis penyebab efek rumah kaca
- c. Peserta didik menghubungkan dampak dari efek rumah kaca dalam kehidupan dan lingkungan sehari-hari.
- d. Peserta didik mampu mengevaluasi ide atau gagasannya dalam mencegah terjadinya efek rumah kaca.
- e. Peserta didik mampu mengkomunikasikan hasil penyeledikan melalui lisan dan tulisan.

Let's define speed, distance and time:


Speed tells us how fast something is travelling. The greater the value, the faster it's going.

Common units of measurement: kilometres per hour (kph) and miles per hour (mph)

Distance is the amount of space between two points that an object covers as it moves.

Common units of measurement: kilometres (km) or miles (mi)

Time is the period it takes to travel a certain distance.

Common units of measurement: hours (h), minutes (min) or seconds (s)

How are speed, distance and time related?

You can find the speed of an object if you know the distance it travelled and the time elapsed to travel the distance.

THE FORMULA

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

Check your understanding!

MATCH THE FOLLOWING:

How fast?	Speed
How long?	Distance
How far?	Time

THE FORMULA

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

From the formula, how do we solve for distance?

From the formula, how do we solve for time?

Check your understanding!

MATCH THE FOLLOWING:

How fast? • → Speed

How long? • → Distance

How far? • → Time

THE FORMULA

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

$$\text{Distance} = \text{Speed} \times \text{Time}$$

$$\text{Time} = \frac{\text{Distance}}{\text{Speed}}$$

Solving Worded Problems

Ava ran from Sunfolk to South Trove in 1 h 30 min. If Ava has an average speed of 9.33 km/h, how far was she able to travel?

Remember to convert 1h 30 minutes into one unit before calculating!

$$1 \text{ h } 30 \text{ min} = 1.5 \text{ h}$$

Since we're looking for distance, we'll use this formula:

$$\text{Distance} = \text{Speed} \times \text{Time}$$

Substitute the given values:

$$\text{Distance} = 9.33 \text{ kph} \times 1.5 \text{ h}$$

Solve:

$$\text{Distance} = 13.99 \approx 14 \text{ km}$$

Ava ran a distance of 14 km from Sunfolk to South Trove.

Producing a Table of Values

Jude rode around the boundary of Russetville that has a distance of 140 km. What is Jude's average speed for each of the given time:

Use the formula:

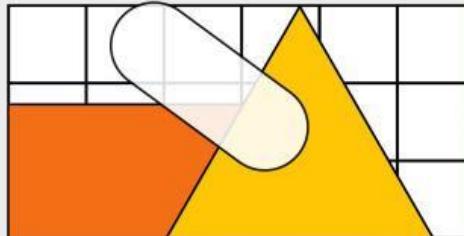
$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

Time (hour)	1	2	3	4	5	6	7
Speed (kph)							

Producing a Table of Values

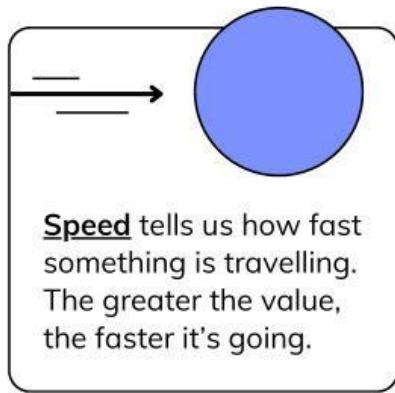
Jude rode around the boundary of Russetville that has a distance of 140 km. What is Jude's average speed for each of the given time:

Use the formula:

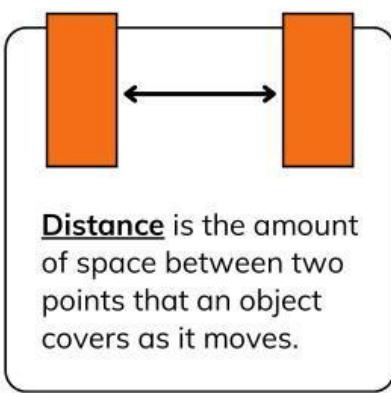

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

Time (hour)	1	2	3	4	5	6	7
Speed (kph)	140	70	47	35	28	23	20

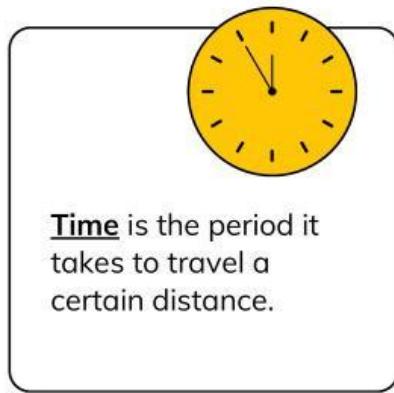
Graph it!


Work with a seatmate in graphing the table of values. Observe the graph, find out whether it is linear or not, then explain your answer.

Share your findings with the class in our next session.

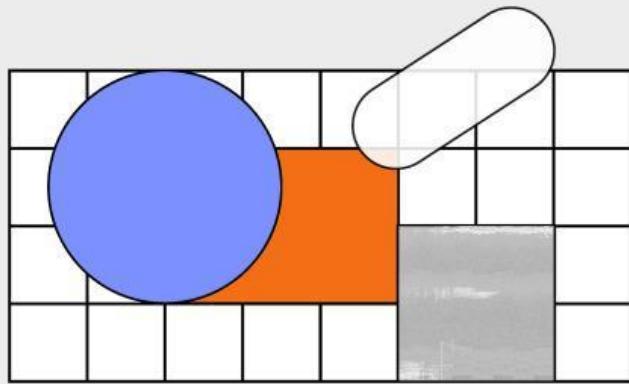


	Time (hour)	1	2	3	4	5	6	7
	Speed (kph)	140	70	47	35	28	23	20


Summary

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

$$\text{Distance} = \text{Speed} \times \text{Time}$$



$$\text{Time} = \frac{\text{Distance}}{\text{Speed}}$$

Resources

WANT TO LEARN MORE?

Review “13.06 Attributes in measurement formula” from Mathsplace.

NEED HELP?

Reach out!
hello@reallygreatsite.com

LIVEWORKSHEETS