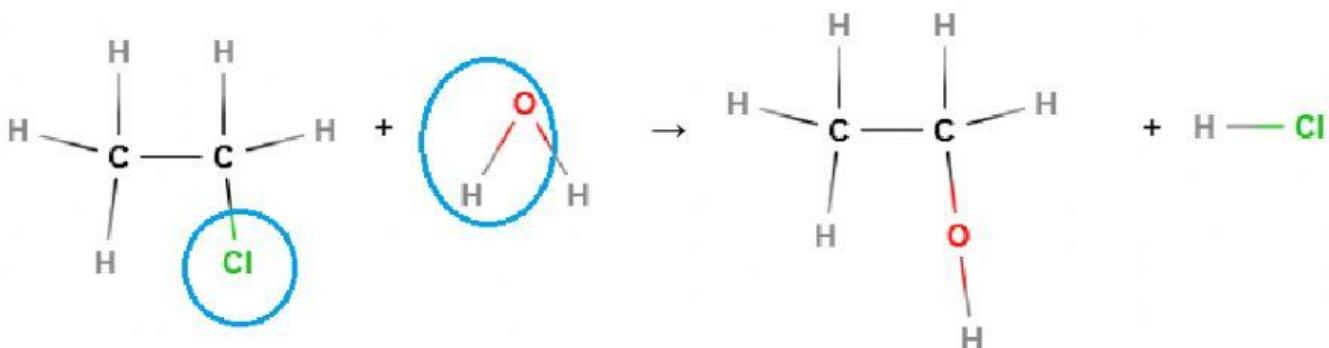


Substitution reactions

(where a saturated organic molecule becomes a different type of saturated organic molecule)

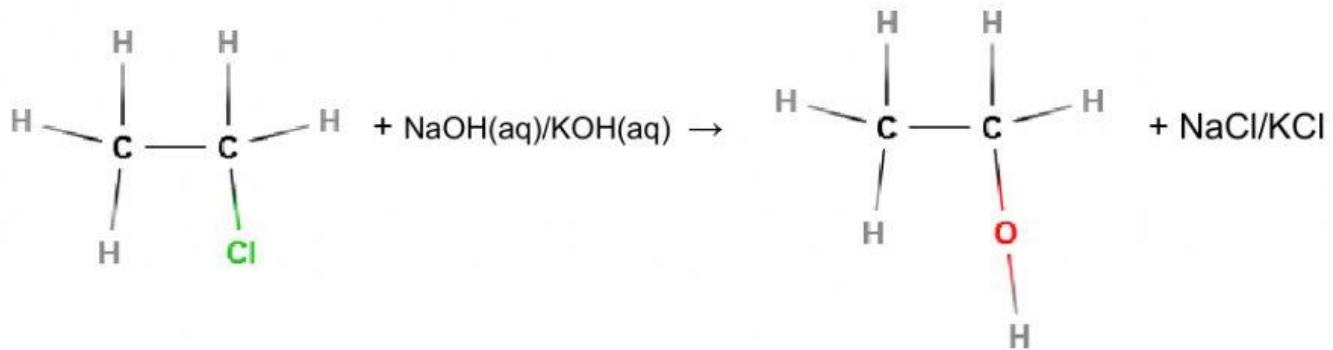
Halogenation (replacing one hydrogen with one halogen)

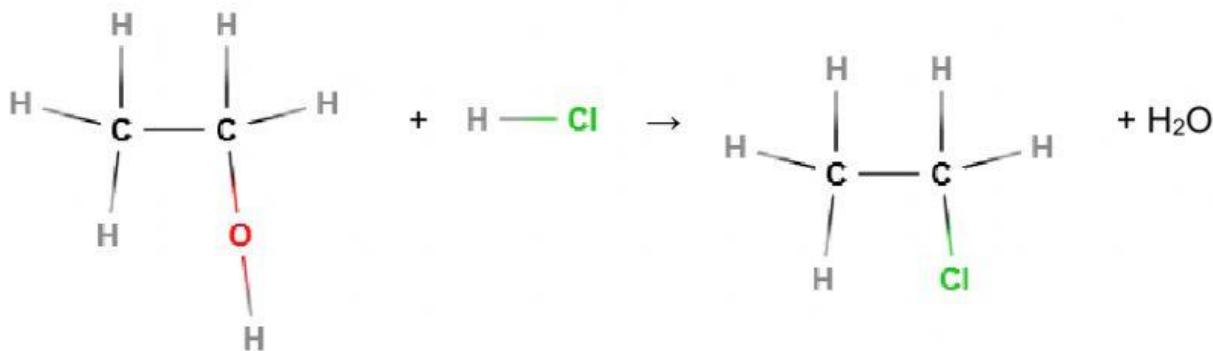

One Cl will 'kick out'/substitute one of the hydrogens and take its place.

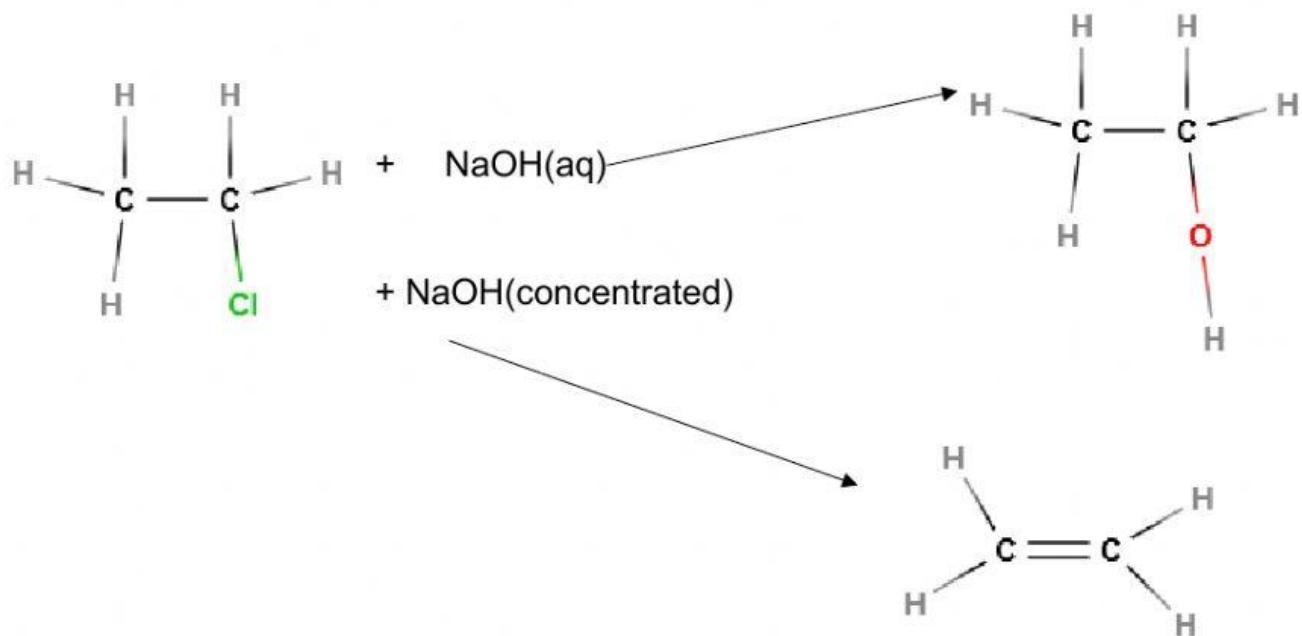
The remaining Cl and the 'kicked out' H then join and form HCl

Reaction conditions;

Reaction must be done in the presence of UV light


Hydrolysis (replacing a halogen with a OH)


Reaction conditions;


- Haloalkanes must be dissolved in ethanol

Or

Substitution with hydrogen halides (replacing a OH with a halogen)

This small difference makes a **BIG** difference in the type of product that forms.

They love testing this in exams!

Watch this video to help you before you carry on

Exercise 1: Multiple choice

1.1 When a substance goes from being unsaturated to saturated, what type of reaction took place:

Addition

Substitution

Elimination

1.2 If water is added during an addition reaction, it is called

Hydrogenation

Hydration

Hydrohalogenation

Halogenation

1.3 When a substance goes from being saturated to saturated, what type of reaction took place:

Addition

Substitution

Elimination

1.4 If hydrogen is removed during an elimination reaction, it is called

Dehydrogenation

Dehydration

Dehydrohalogenation

1.5 If H_2O is added during a substitution reaction and takes the place of a hydrogen, it is called

Hydrogenation

Halogenation

Hydrolysis

Substitution with hydrogen halides

1.6 If HI is removed during an elimination reaction, it is called
Dehydrogenation
Dehydration
Dehydrohalogenation

1.7 If hydrogen is added during an addition reaction, it is called
Hydrogenation
Hydration
Hydrohalogenation
Halogenation

1.8 When a substance goes from being saturated to unsaturated, what type of reaction took place:

Addition
Substitution
Elimination

1.9 If a halogen is added during an addition reaction, it is called
Hydrogenation
Hydration
Hydrohalogenation
Halogenation

1.10 If a halogen is added during a substitution reaction and takes the place of a hydrogen, it is called
Hydrogenation
Halogenation
Hydrolysis
Substitution with hydrogen halides

1.12 If KOH(aq) is added during a substitution reaction and takes the place of a hydrogen, it is called

Hydrogenation

Halogenation

Hydrolysis

Substitution with hydrogen halides

1.13 If a halogen is removed during an elimination reaction, it is called

Dehydrogenation

Dehydration

Dehydrohalogenation

1.14 If HBr is added during an addition reaction, it is called

Hydrogenation

Hydration

Hydrohalogenation

Halogenation

Below is a summary of all the reactions

	1. Hydrogenation (adding H ₂)	2. Halogenation (adding halogen)	3. Hydration (adding H ₂ O)	4. Hydrohalogenation (adding H + halogen)
ADDITION (alkene to alkane)	$\text{C}=\text{C}-\text{C}- + \text{H}_2 \rightarrow \text{C}-\text{C}-\text{C}-$ * alkene dissolved in non polar solvent * catalyst of Ni, Pd or Pt * In a Hydrogen atmosphere	$\text{C}=\text{C}-\text{C}- + \text{Cl}_2 \rightarrow \text{C}-\overset{\text{Cl}}{\underset{\text{Cl}}{\text{C}}}-\text{C}-$ * alkene dissolved in unreactive solvent	$\text{C}=\text{C}-\text{C}- + \text{H}_2\text{O} \rightarrow \text{C}-\text{C}-\overset{\text{OH}}{\underset{\text{OH}}{\text{C}}}-$ * catalyst of H ₂ SO ₄ /H ₃ PO ₄ * in excess H ₂ O	$\text{C}=\text{C}-\text{C}- + \text{HCl} \rightarrow \text{C}-\overset{\text{H}}{\underset{\text{Cl}}{\text{C}}}-\text{C}-$ * no water must be present
ELIMINATION (alkane to alkene)	1. Dehydrogenation (remove H) $\text{C}-\text{C}- \xrightarrow{\text{Pt}} \text{C}=\text{C} + \text{H}_2$ * 800°C		2. Dehydration (remove H ₂ O) $\text{C}-\text{C}-\text{OH} \xrightarrow{\text{H}_2\text{SO}_4} \text{C}=\text{C} + \text{H}_2\text{O}$ * concentrated H ₂ SO ₄	3. Dehydrohalogenation (remove H ₂ and halogen) $\text{C}-\text{C}-\text{Cl} + \text{NaOH} \rightarrow \text{C}=\text{C} + \text{NaCl} + \text{H}_2\text{O}$ * concentrated NaOH/KOH base * heat under reflux
SUBSTITUTION (alkane to alkane)	1. Halogenation (swap H ₂ for halogen) $\text{C}- + \text{Cl}_2 \rightarrow \text{C}-\text{Cl} + \text{HCl}$ * needs UV light	2. Hydrolysis (swap halogen for H ₂ O) $\text{C}-\text{C}-\text{Br} + \text{H}_2\text{O} \rightarrow \text{C}-\overset{\text{OH}}{\underset{\text{OH}}{\text{C}}}- + \text{HBr}$ * haloalkane dissolved in ethanol	3. Hydrolysis- with NaOH $\text{C}-\text{C}-\text{Br} + \text{NaOH} \rightarrow \text{C}-\overset{\text{OH}}{\underset{\text{OH}}{\text{C}}}- + \text{NaBr}$ * base is dilute/ aqueous * must be heated	4. Substitution with hydrogen halides (swap OH for halogen) $\text{C}-\text{C}-\text{OH} + \text{HCl} \rightarrow \text{C}-\overset{\text{Cl}}{\underset{\text{Cl}}{\text{C}}}- + \text{H}_2\text{O}$

* remember the Cl₂, F₂, Br₂, OH... goes to the Carbon with the least number of hydrogen bonds in addition

Created by Miss N Badenhorst

LIVEWORKSHEETS