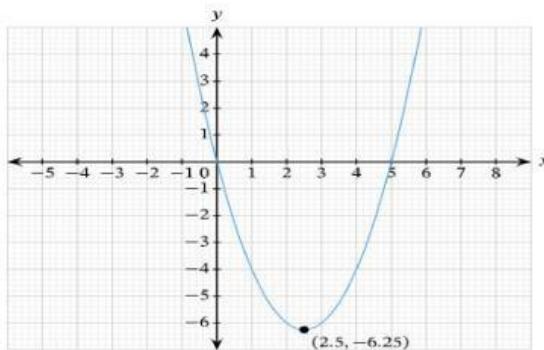


Sheet (1)

Choose the correct answer :

Q : By drawing the straight line that passes through the points $(5, 7)$ and $(8, 2)$ on a grid, determine which of the following is the equation of this line.

- A $3y = 5x - 46$
- B $3y = 5x + 46$
- C $3y = 5x + 9$
- D $3y = -5x - 9$
- E $3y = -5x + 46$


Q : Does the line representing the function $f(x) = 3 - x$ have a positive or a negative slope?

- A Negative slope
- B Positive slope

Q : Find the coordinates of the point of intersection of the linear equation $3y - 5x + 8 = 0$ with the y - and x -axes.

- A $(0, -\frac{3}{8})$ and $(\frac{8}{5}, 0)$
- B $(-\frac{8}{3}, 0)$ and $(\frac{8}{5}, 0)$
- C $(0, \frac{3}{8})$ and $(-\frac{8}{5}, 0)$
- D $(0, -\frac{8}{3})$ and $(\frac{8}{5}, 0)$
- E $(0, \frac{8}{3})$ and $(-\frac{8}{5}, 0)$

Q : Write the quadratic equation represented by the graph shown. Give your answer in factored form.

A $y = x(x - 5)$

B $y = -x(x + 5)$

C $y = (x - 9)^2$

D $y = x(x + 5)$

E $y = -x(x - 5)$

Q : Determine $\lim_{x \rightarrow \infty} \frac{(5x^2 + 3)^2}{(3x - 2)^2 (x^2 - 2x)}$, if it exists.

A $\frac{25}{9}$
 B $\frac{5}{9}$
 C 0
 D The limit does not exist.
 E $\frac{9}{4}$

Q : Find $\lim_{x \rightarrow \infty} \frac{8x^4 - 4x^3 - 2x^2 + 9x - 6}{-5x^4 - 6x^3 - 2x^2 - 7x + 3}$.

A ∞
 B $-\infty$
 C $\frac{8}{5}$
 D $-\frac{8}{5}$

Q : If $f(x)$ is a polynomial function of the first degree and $g(x)$ is a polynomial function of the sixth degree, find $\lim_{x \rightarrow \infty} \frac{g(x)}{4x^4 f(x)}$.

A A real number $\neq 0$
 B Zero
 C $\pm\infty$
 D It has no limit.

Q : Find $\lim_{x \rightarrow \infty} \frac{-5x^{-4} + 5x^{-3} - x^{-2} + 6x^{-1} + 5}{7x^{-4} + 8x^{-3} + x^{-1} - 9}$.

A ∞
 B $-\frac{5}{9}$
 C $\frac{5}{9}$
 D $-\infty$