

Worksheet - Titration Problems

- What is the M of NaOH if it takes 40 ml of NaOH to reach the equivalence point in a titration with 50 ml of 0.2 M HCl?
M
- 50 ml of 0.3 M KOH are required to titrate 60 ml of H_2SO_4 . What is the M of the H_2SO_4 ?
M
- 60 ml of 1.2 M NaOH are required to titrate 40 ml of HF. What is the M of the HF?
M
- What volume of 0.40 M NaOH would be required to titrate 100 ml of 0.25 M HCl?
ml
- 40 ml of 0.1M H_3PO_4 are required to titrate 150 ml of NaOH to the equivalence point. What is the M of the NaOH?
M
- 55 ml of 1.2 M $\text{C}_2\text{H}_3\text{CO}_2$ are used to titrate a sample of 0.67 M $\text{Ba}(\text{OH})_2$. What is volume of the $\text{Ba}(\text{OH})_2$ used?
ml
- 90 ml of 0.25 M $\text{Ca}(\text{OH})_2$ are required to titrate 100 ml of HCl. What is M of the HCl?
M
- 50 ml of 0.45M $\text{Sr}(\text{OH})_2$ are required to titrate a .75 M H_2SO_4 sample. What is the volume of the H_2SO_4 ?
ml
- A 94 mL sample of citric acid, $\text{H}_3\text{C}_6\text{H}_5\text{O}_7$, solution (example=orange juice) is titrated to the phenolphthalein endpoint using 7.0 mL of 0.010 M NaOH. What is the concentration of the citric acid in the orange juice?
M
- 30 ml of 0.3 M NaOH are required to titrate H_3PO_4 to the equivalence point. How many moles of H_3PO_4 are needed to reach the equivalence point?
moles H_3PO_4