

## Can we create the "perfect" farm? - Brent Loken

About 10,000 years ago, humans began to farm. This **agricultural revolution** was a **turning point** in our history that enabled people to settle, build and create. In short, agriculture **enabled the existence of civilization**.

Today, **approximately 40** percent of our planet is **farmland**. Spread all over the world, these **agricultural lands** are the pieces to a **global puzzle** we are all facing: in the future, **how can we feed every member of a growing population a healthy diet?** Meeting this goal will require nothing short of a **second agricultural revolution**.

The **first agricultural revolution** was **characterized by expansion and exploitation**, feeding people at the **expense of forests, wildlife, and water** and **destabilizing the climate** in the process. That's not an **option** the next time around.

Agriculture **depends on a stable climate with predictable seasons and weather patterns**. This means we can't keep **expanding our agricultural lands**, because doing so will **undermine the environmental conditions** that **make agriculture possible** in the first place.

Instead, the next agricultural revolution will have to **increase the output of our existing farmland for the long term** while **protecting biodiversity, conserving water, and reducing pollution** and **greenhouse gas emissions**. So what will the future farms look like?

This drone is part of a **fleet that monitors the crops** below. The farm may look **haphazard** but it is a **delicately engineered** use of the land that **intertwines crops and livestock** with wild habitats. Conventional farming methods **cleared large swathes of land** and **planted them with a single crop**, **eradicating wildlife** and **emitting huge amounts of greenhouse gases** in the process. This **approach** aims to **correct that damage**.

Meanwhile, moving among the crops, teams of field robots **apply fertilizer in targeted doses**. Inside the soil, hundreds of **sensors** gather data on **nutrients and water levels**. This information **reduces unnecessary water use** and tells farmers where they should apply **more and less fertilizer** instead of causing pollution by **showering it across the whole farm**.

But the farms of the future won't be all **sensors** and **robots**. These technologies are **designed** to help us produce food in a way that **works with** the environment rather than **against it**, **taking into account the nuances of local ecosystems**. Lower-cost **agricultural practices** can also **serve those same goals** and are much more **accessible** to many farmers.

In fact, many such **practices** are already **in use** today and stand to have an **increasingly large impact** as more farmers **adopt** them. In Costa Rica, farmers have **intertwined farmland with tropical habitats** so successfully that they have significantly **contributed to doubling the country's forest**

## Can we create the "perfect" farm? - Brent Loken

cover. This provides food and **habitat for wildlife** as well as natural **pollination** and **pest control** from the birds and **insects** these farms attract, producing food while **restoring** the planet. In the United States, **ranchers** are **raising cattle** on grasslands **composed of native species**, generating a valuable **protein source** using production methods that **store carbon** and **protect biodiversity**. In Bangladesh, Cambodia, and Nepal, new **approaches** to rice production may **dramatically decrease** greenhouse gas emissions in the future. Rice is a **staple food** for three billion people and the **main source** of **livelihood** for millions of **households**. More than 90 percent of rice is grown in **flooded paddies**, which uses a lot of water and **releases 11 percent of annual methane emissions**, which **accounts for** one to two percent of total annual greenhouse gas emissions **globally**.

By **experimenting** with new **strains** of rice, **irrigating less**, and **adopting** less **labor-intensive** ways of planting seeds, farmers in these countries have already increased their **incomes** and **crop yields** while **cutting down on** greenhouse gas **emissions**. In Zambia, numerous organizations are investing in **locally specific** methods to **improve** crop production, reduce **forest loss** and **improve livelihoods** for local farmers. These efforts are **projected to increase** crop yield by almost a quarter over the next few decades. If **combined** with methods to **combat deforestation** in the region, they could move the country toward a **resilient, climate-focused** agricultural sector. And in India, where up to 40 percent of **post-harvest** food is **lost** or **wasted** due to poor **infrastructure**, farmers have already started to **implement** solar-powered cold **storage capsules** that help thousands of rural farmers **preserve** their produce and become a **viable** part of the **supply chain**. It will take all of these methods, from the most **high-tech** to the **lowest-cost**, to **revolutionize** farming.

High-tech interventions stand to **amplify** climate- and **conservation-oriented** approaches to farming, and large producers will need to invest in **implementing** these **technologies**. Meanwhile, we'll have to **expand access** to lower-cost methods for smaller-scale farmers. This vision of future farming will also **require** a global shift toward more **plant-based diets** and **huge reductions** in food loss and waste, both of which will **reduce** pressure on the land and allow farmers to **do more** with what they **have available**.

If we **optimize** food production, both on **land** and at **sea**, we can feed **humanity** within the **environmental limits** of the earth, but there's a very **small margin of error**, and it will take **unprecedented** global **cooperation** and **coordination** of the agricultural lands we have today.