

WORK, POWER AND SIMPLE MACHINES

Work

= **Force**

X

Distance

Definition:

A _____ that makes something _____

Units: J N m

Definition:

Is a _____ or a _____.

Units: J N m

Definition:

How _____ something moves.

Units: J N m

Power

= **Work**

÷

Time

Definition:

The amount of _____ per unit of _____

Units: W J N m

Definition:

A _____ that makes something _____

Units: J N m

Definition:

How _____ it takes to do something.

Units: J N m sec

Mechanical Advantage

=

Force of the resistance

÷

Force of the effort

Definition: The _____ of times a machine _____ force.

Units: J N M none

Definition:

The force that the comes _____ of the machine.

Units: J N m

Definition:

The force that goes _____ the machine.

Units: J N m

Efficiency

=

Work Output

÷

Work input X 100

Definition: Compares useful _____ to work.

Units: J N m %

Definition:

The amount of work that the machine _____.

Units: J N m

Definition: The amount of work that went _____ the machine.

Units: J N m