

Galvanic/voltaic cells

How then do we determine which one will oxidise or reduce, if they don't give us a full reaction?

CAPS

TABLE 4B: STANDARD REDUCTION POTENTIALS

Half-reactions		E° (V)
$\text{Li}^+ + \text{e}^-$	\rightleftharpoons Li	-3,05
$\text{K}^+ + \text{e}^-$	\rightleftharpoons K	-2,93
$\text{Cs}^+ + \text{e}^-$	\rightleftharpoons Cs	-2,92
$\text{Ba}^{2+} + 2\text{e}^-$	\rightleftharpoons Ba	-2,90
$\text{Sr}^{2+} + 2\text{e}^-$	\rightleftharpoons Sr	-2,89
$\text{Ca}^{2+} + 2\text{e}^-$	\rightleftharpoons Ca	-2,87
$\text{Na}^+ + \text{e}^-$	\rightleftharpoons Na	-2,71
$\text{Mg}^{2+} + 2\text{e}^-$	\rightleftharpoons Mg	-2,36
$\text{Al}^{3+} + 3\text{e}^-$	\rightleftharpoons Al	-1,66
$\text{Mn}^{2+} + 2\text{e}^-$	\rightleftharpoons Mn	-1,18
$\text{Cr}^{3+} + 2\text{e}^-$	\rightleftharpoons Cr	-0,91
$2\text{H}_2\text{O} + 2\text{e}^-$	\rightleftharpoons $\text{H}_2(\text{g}) + 2\text{OH}^-$	-0,83
$\text{Zn}^{2+} + 2\text{e}^-$	\rightleftharpoons Zn	-0,78
$\text{Cr}^{3+} + 3\text{e}^-$	\rightleftharpoons Cr	-0,74
$\text{Fe}^{2+} + 2\text{e}^-$	\rightleftharpoons Fe	-0,44
$\text{Cr}^{3+} + \text{e}^-$	\rightleftharpoons Cr^{2+}	-0,41
$\text{Cd}^{2+} + 2\text{e}^-$	\rightleftharpoons Cd	-0,40
$\text{Co}^{2+} + 2\text{e}^-$	\rightleftharpoons Co	-0,28
$\text{Ni}^{2+} + 2\text{e}^-$	\rightleftharpoons Ni	-0,27
$\text{Sn}^{2+} + 2\text{e}^-$	\rightleftharpoons Sn	-0,14
$\text{Pb}^{2+} + 2\text{e}^-$	\rightleftharpoons Pb	-0,13
$\text{Fe}^{3+} + 3\text{e}^-$	\rightleftharpoons Fe	-0,06
$2\text{H}^+ + 2\text{e}^-$	\rightleftharpoons $\text{H}_2(\text{g})$	0,00
$\text{S} + 2\text{H}^+ + 2\text{e}^-$	\rightleftharpoons $\text{H}_2\text{S}(\text{g})$	+0,14
$\text{Sn}^{4+} + 2\text{e}^-$	\rightleftharpoons Sn^{2+}	+0,15
$\text{Cu}^{2+} + \text{e}^-$	\rightleftharpoons Cu^+	+0,16
$\text{SO}_4^{2-} + 4\text{H}^+ + 2\text{e}^-$	\rightleftharpoons $\text{SO}_2(\text{g}) + 2\text{H}_2\text{O}$	+0,17
$\text{Cu}^{2+} + 2\text{e}^-$	\rightleftharpoons Cu	+0,34
$2\text{H}_2\text{O} + \text{O}_2 + 4\text{e}^-$	\rightleftharpoons 4OH^-	+0,40
$\text{SO}_2 + 4\text{H}^+ + 4\text{e}^-$	\rightleftharpoons $\text{S} + 2\text{H}_2\text{O}$	+0,45
$\text{Cu}^+ + \text{e}^-$	\rightleftharpoons Cu	+0,52
$\text{I}_2 + 2\text{e}^-$	\rightleftharpoons 2I^-	+0,54
$\text{O}_2(\text{g}) + 2\text{H}^+ + 2\text{e}^-$	\rightleftharpoons H_2O_2	+0,68
$\text{Fe}^{3+} + \text{e}^-$	\rightleftharpoons Fe^{2+}	+0,77
$\text{NO}_3^- + 2\text{H}^+ + \text{e}^-$	\rightleftharpoons $\text{NO}_2(\text{g}) + \text{H}_2\text{O}$	+0,80
$\text{Ag}^+ + \text{e}^-$	\rightleftharpoons Ag	+0,80
$\text{Hg}^{2+} + 2\text{e}^-$	\rightleftharpoons $\text{Hg}(\text{l})$	+0,85
$\text{NO}_3^- + 4\text{H}^+ + 3\text{e}^-$	\rightleftharpoons $\text{NO}(\text{g}) + 2\text{H}_2\text{O}$	+0,96
$\text{Br}_2(\text{l}) + 2\text{e}^-$	\rightleftharpoons 2Br^-	+1,07
$\text{Pt}^{2+} + 2\text{e}^-$	\rightleftharpoons Pt	+1,20
$\text{MnO}_4^- + 4\text{H}^+ + 2\text{e}^-$	\rightleftharpoons $\text{Mn}^{2+} + 2\text{H}_2\text{O}$	+1,23
$\text{O}_2(\text{g}) + 4\text{H}^+ + 4\text{e}^-$	\rightleftharpoons $2\text{H}_2\text{O}$	+1,23
$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^-$	\rightleftharpoons $2\text{Cr}^{3+} + 7\text{H}_2\text{O}$	+1,33
$\text{Cl}_2(\text{g}) + 2\text{e}^-$	\rightleftharpoons 2Cl^-	+1,36
$\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^-$	\rightleftharpoons $\text{Mn}^{2+} + 4\text{H}_2\text{O}$	+1,51
$\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^-$	\rightleftharpoons $2\text{H}_2\text{O}$	+1,77
$\text{Co}^{3+} + \text{e}^-$	\rightleftharpoons Co^{2+}	+1,81
$\text{F}_2(\text{g}) + 2\text{e}^-$	\rightleftharpoons 2F^-	+2,87

Notice the elements at the top of the table are ones that really want to give away electrons or oxidise (like the group 1 and 2 metals)

Increasing reducing ability

Notice the elements at the bottom of the table are ones that really want to gain electrons or reduce (like the group 7 elements)

*we will only be using the list with Li at the top (you can always ignore the one with F at the top)

Now it becomes a question of: which element **most** wants to oxidise

The element on the table have been carefully organised from most likely to oxidise (the higher it is on the table) to less likely to oxidise (the lower it is on the table)

The higher an element is on the list of standard reduction potential- the more likely it is to oxidise.

The lower down an element is on this list, the more likely it is to reduce.

Exercise 1

Choose between the following elements, which is more likely to oxidise:

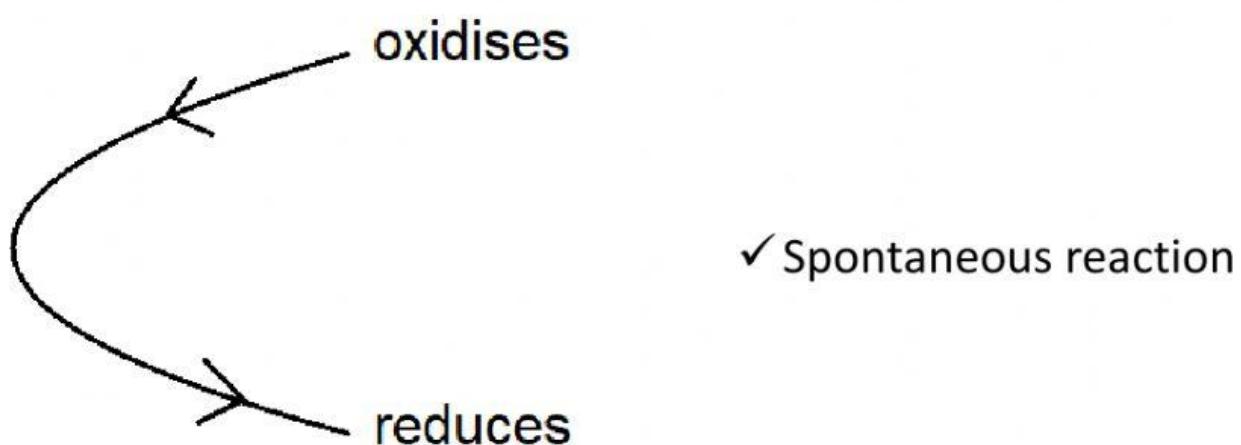
1.1) Li Ca

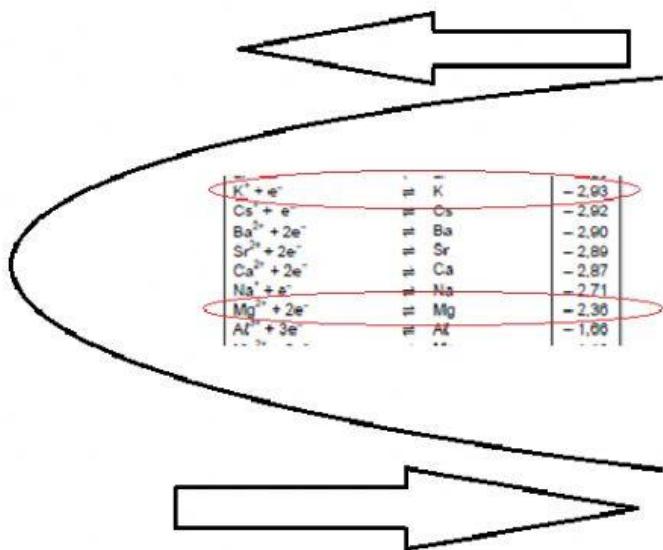
1.2) Al Mg

1.3) Na Pb

1.4) Pt Cu (look for the Cu next to the value +0,34)

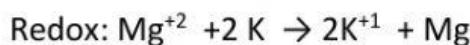
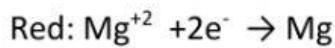
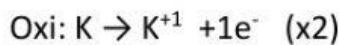
1.5) Ag Ni

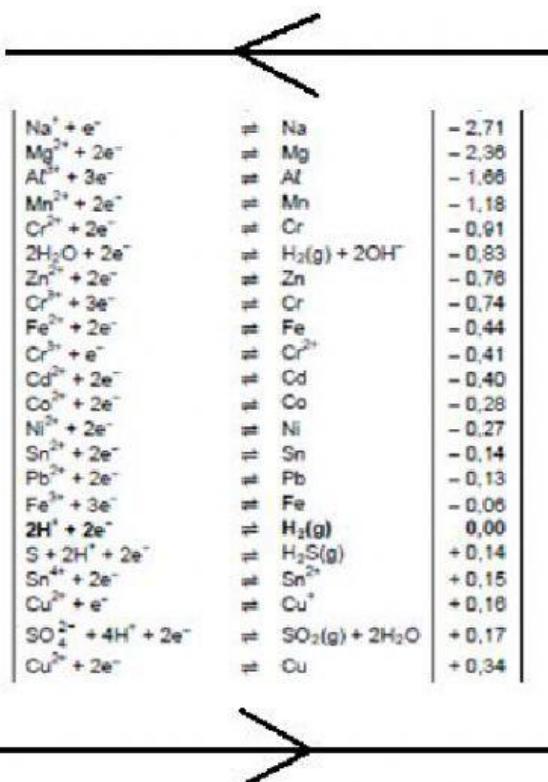

Now, how do we actually use this table to write oxidation and reduction half reactions?


Example 1

Let's say that K and Mg reacted together

Which one will oxidise?




Then you use the 'C-rule' to write the reactions


oxidise (read from right to left)

reduce (read from left to right)

Example 2:

Na and Cu

The one higher on the table is the one that will oxidise

The one lower on the table is the one that will reduce

Sodium is higher up on the table and thus oxidises and Cu is lower down and thus reduces

Oxi: $\text{Na} \rightarrow \text{Na}^+ + \text{e}^-$ (x2) *Make sure you read this from right to left from the table

Red: $\text{Cu}^{+2} + 2\text{e}^- \rightarrow \text{Cu}$ *Make sure you read this from left to right from the table

Redox: $2\text{Na} + \text{Cu}^{+2} \rightarrow 2\text{Na}^+ + \text{Cu}$

Example 3

Mg and Al

Oxi: $\text{Mg} \rightarrow \text{Mg}^{+2} + 2\text{e}^-$ (x3)

Red: $\text{Al}^{+3} + 3\text{e}^- \rightarrow \text{Al}$ (x2)

Redox: $3\text{Mg} + 2\text{Al}^{+3} \rightarrow 3\text{Mg}^{+2} + 2\text{Al}$

Exercise:

Write the oxidation, reduction and redox reaction for the following: (You will need to use the **standard reduction potential table**)

1) Ba and Ca

Oxi: \rightarrow

Red: \rightarrow

Redox: \rightarrow

2) Ca and Ni

Oxi: \rightarrow

Red: \rightarrow

Redox: \rightarrow

3) Fe(ii) and Ag

Oxi: \rightarrow

Red: \rightarrow

Redox: \rightarrow

4) Zn and Li

Oxi: →

Red: →

Redox: →