

Example 2

Mix 0.17 kg of 12°C milk into 0.75 kg of 95°C coffee. Both are essentially water with a specific heat capacity of 4186 J/(kg C°). What is the equilibrium temperature?

m	milk	coffee
c	$1\text{kg}^{-1}\text{C}^{-1}$	$1\text{kg}^{-1}\text{C}^{-1}$
θ	$^{\circ}\text{C}$	$^{\circ}\text{C}$

$$Q_{\text{loss}} = Q_{\text{gained}}$$

$$Q_{\text{coffee}} = Q_{\text{milk}}$$

$$m_c \Delta\theta = m_c \Delta\theta$$

$$(1)(1)(\theta_i - \theta_f) = (1)(1)(\theta_f - \theta_i)$$

$$(\theta_i - \theta_f) = (\theta_f - \theta_i)$$

$$-\theta_f = \theta_f -$$

$$\theta_f =$$

$$\theta_f = \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}}^{\circ}\text{C}$$

Example 3

What is the final temperature of 0.47kg of ice at 0°C added to an insulated container filled with 3.75 kg of water at 22°C? ($c_{ice} = 2090 \text{ J/kg}^{\circ}\text{C}$)

	ice	water
m	kg	kg
c	$\text{J kg}^{-1}^{\circ}\text{C}^{-1}$	$\text{J kg}^{-1}^{\circ}\text{C}^{-1}$
θ	$^{\circ}\text{C}$	$^{\circ}\text{C}$

$$Q_{loss} = Q_{gained}$$

$$Q_{water} = Q_{ice}$$

$$m_c \Delta\theta = m_c \Delta\theta$$

$$()c ()c (-\theta_f) = ()c ()c (\theta_f -)$$

$$- \theta_f = \theta_f$$

$$\theta_f =$$

$$\theta_f = \underline{\hspace{2cm}}$$

$$= ^{\circ}\text{C}$$

Example 4

A, B and C are the type of liquid which mass A is 8 kg and mass B is 22 kg. The initial temperature of liquid A is 65°C , liquid B is 45°C and liquid C is 15°C . The final temperature when all the liquid mixed is 40°C . If the specific heat of A, B and C are $2.1 \times 10^3 \text{ J/kg}^{\circ}\text{C}$, $3.3 \times 10^3 \text{ J/kg}^{\circ}\text{C}$ and $4.2 \times 10^3 \text{ J/kg}^{\circ}\text{C}$, calculate the mass of the liquid C.

	A	B	C
m	kg	kg	
c	$\text{J kg}^{-1}^{\circ}\text{C}^{-1}$	$\text{J kg}^{-1}^{\circ}\text{C}^{-1}$	$\text{J kg}^{-1}^{\circ}\text{C}^{-1}$
θ	$^{\circ}\text{C}$	$^{\circ}\text{C}$	$^{\circ}\text{C}$

$$\theta_{\text{final}} = {}^{\circ}\text{C}$$

$$Q_{\text{loss}} = Q_{\text{gained}}$$

$$Q_A + Q_B = Q_C$$

$$m_A c_A \Delta \theta_A + m_B c_B \Delta \theta_B = m_C c_C \Delta \theta_C$$

$$() () (-) + () () (-) = m () (-)$$

$$+ = m ()$$

$$\therefore m = \underline{\hspace{2cm}}$$

$$= \underline{\hspace{2cm}} \text{kg}$$