Unit 2. Molecular bases of the inheritance: Interpretation of genetic code. Mutations. Genetic engineering | | | | Secon | d letter | | | | |---------------|---|---------------------------------|--------------------------|---------------------------------|--------------------------------|------|--------------| | | | U | С | A | G | | | | | U | UUU }Phe UUA }Leu | UCU
UCC
UCA
UCG | UAU Tyr
UAC Stop
UAG Stop | UGU Cys
UGC Stop
UGG Trp | DOAG | | | ener | С | CUU
CUC
CUA
CUG | CCU
CCC
CCA
CCG | CAU His
CAC GIn
CAG GIn | CGU
CGC
CGA
CGG | DOAG | Third letter | | בוו או ופוופו | A | AUU AUC AUA Met | ACU
ACC
ACA
ACG | AAU ASN
AAC Lys
AAG Lys | AGU Ser
AGC AGA Arg | DOAG | Thing | | | G | GUU
GUC
GUA
GUA
GUG | GCU
GCC
GCA
GCG | GAU Asp
GAC GAA Glu | GGU
GGC
GGA
GGG | UCAG | | | Amino acid names and abbreviations | | | | | | | |------------------------------------|-------------------|-------------------|--|--|--|--| | Amino acid | Three letter code | Single lette code | | | | | | Alanine | Ala | A | | | | | | Arginine | Arg | R | | | | | | Aspartic acid | Asp | D | | | | | | Asparagine | Asn | N | | | | | | Cysteine | Cys | C | | | | | | Glutamic acid | Glu | E | | | | | | Glutamine | Gin | Q | | | | | | Glycine | Gly | G | | | | | | Histidine | His | н | | | | | | Isoleucine | lle | 1 | | | | | | Leucine | Leu | L | | | | | | Lysine | Lys | K | | | | | | Methionine | Met | M | | | | | | Phenylalanine | Phe | F | | | | | | Proline | Pro | Р | | | | | | Serine | Ser | s | | | | | | Threonine | Thr | т | | | | | | Tryptophan | Trp | w | | | | | | Tyrosine | Tyr | Y | | | | | | Valine | Val | V | | | | | Find the correct amino acids that are coded by the following codons. You can help you using the two tables above: CCC UGC GAA AUG 2. What is the correct sequence of nucleotides of the mRNA that code for the following polypeptide chain (*The first is an example*)? You can help you using the two tables above. 3. Drag and drop the following tags to cover up the "start" and "stop" condons in each one of these sequences of mRNA: STAR STOP 5'-AAU UAU AUG CGC CGU UAG UCC CAA AGG-3' STAR STOP 5'-AUG GGG AAG UAA CGU UGG UCA CAC UCG-3' STAR STOP 5'-GUG GGG AAG AUG CGU AAG UCA UGA UCG-3' 4. Drag and drop the following tRNAs to the correct position of this sequence of mRNA according to the rule of complementarity of bases. Use the tables on the previous page: | | A | U | U | A | U | G | C | C | U | A | G | U | 6 | A | G | U | G | G | U | A | A | C | C | C | | |------|---|---|---|----|----|---|----|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|----| | 5' - | | 1 | 1 | _1 | -1 | 1 | _1 | 1 | 1 | | 1 | | | 1 | _1 | | 1 | 1 | | 1 | 1 | | 1 | 1 | 3' | - Find the correct sequence of amino acids that are code for the following mRNA. Write the correct code of three letters in each one of these gaps. You can help you with the tables on the previous page. - 5'-GUG AGG AAG GAG CGU AAG UCA GGA UCG-3' NH2- COOH - 6. Complete the following text with the correct words. Then select the correct type of mutation according to the definitions: | Mutation is the | of DNA sequence that can be | to the next | |----------------------|-----------------------------|-------------| | generation of cells. | | | We can classify mutations according to three different criteria: - According to _____ we can distinguish spontaneous mutations or induced mutations. - According to ______ we can distinguish point mutations, chromosomal mutations and numeric mutations. - According to _____ we can distinguish somatic mutations and germ line mutations. - are responsible for the genetic diversity. 7. Select the options that are related to each one of these types of mutations (there are five correct options in each column): | According to the type of cell | According to the cause | According to the DNA involved | | | | | | | |---|---|---|--|--|--|--|--|--| | Somatic mutations can produce cancer | These mutations are classified
as spontaneous and induced
mutations | There are three types of
mutagens: physical, chemical
and biological mutagens | | | | | | | | Germ line mutations affect to
egg cell and sperm cell | Germ line mutations create genetic diversity | Point mutations affect only the
sequence of a gene | | | | | | | | These mutations are classified
in spontaneous and induced
mutations | Chromosomal mutations cause diseases such as a lot of types of cancer | Chromosomal mutations cause diseases such as a lot of types of cancer | | | | | | | | Somatic mutations occur in body cells | UV radiation is a physical mutagen | Trisomy of the chromosome 21 causes the Down syndrome | | | | | | | | Germ line mutations create genetic diversity | Occurs in a genome when a single base pair is added, deleted or changed | There are five types of chromosomal mutations | | | | | | | | UV radiation is a physical mutagen | Some viruses can cause mutations | Germ line mutations create genetic diversity | | | | | | | | Germ line mutations can pass on to offspring | Spontaneous mutations occur naturally | Numerical mutations affect the
number of chromosomes | | | | | | | | Trisomy of the chromosome 21 causes the Down syndrome | Smokers have more risk to
suffer from cancer | Some environmental agents can multiply the risk of mutation | | | | | | | | 8. Complete the following s | entence with the correct words | | | | | | | | | .The genetic | is the manipulatio | n, modification, and recombination | | | | | | | | of DNA or other nucleic acid norganisms. | molecules in order to | an organism or population of | | | | | | | | Select the correct exam below: | ple of genetic engineering that | are related with the sentences | | | | | | | | a. This technique allows the creation of clones of microorganisms that contain an outside gene. | | | | | | | | | | b. With this technique is possi | ible obtain a lot of copies of the sa | ame sequence of DNA. | | | | | | | | c. Now, we associate this gen | netic engineering with the detection | n of COVID-19. | | | | | | | | d. This technique consists of p | passing a gene to a host cell. | | | | | | | |