

Exercise ICE table:

Exercise 7

Calculation~system not at equilibrium

At $T = 0^\circ\text{C}$
 $0.40 \text{ mol/L } \text{NOCl(g)}$

A system was charged with NOCl gas until its concentration reached 0.400 mol L^{-1} . The temperature of the system was then increased to 245°C and it was allowed to reach equilibrium according to equation. At equilibrium, the concentration of Cl_2 was $0.0225 \text{ mol L}^{-1}$. Calculate the value of K_c at this temperature

Answer:

	$2\text{NOCl(g)} \rightleftharpoons \text{Cl}_2 \text{(g)} + 2\text{NO(g)}$		
[] initial	[]	[]	[]
[] change	[]	[]	[]
[] at equilibrium	[]	[]	[]

Given info:

$$[\text{Cl}_2]_{\text{eq}} = 0.0225 \text{ mol/L}$$

$$K_c = \frac{[\text{Cl}_2][\text{NO}]^2}{[\text{NOCl}]^2}$$

At equilibrium,

$$[\text{Cl}_2] \text{ is } 0.0225 \text{ mol/L} = x$$

$$\begin{aligned} [\text{NOCl}] &= 0.400 - 2x \\ &= \text{[] mol/L} \end{aligned}$$

$$\begin{aligned} [\text{NO}] &= 2x \\ &= \text{[] mol/L} \end{aligned}$$

Substitute the value of [] at equilibrium in the Kc formula

$$K_c = \frac{[\quad]^2}{[\quad]}$$
$$= \boxed{\quad}$$