

WORKSHEET

LESSON 3-8: RATIONAL ZERO THEOREM

KeyConcept Rational Zero Theorem

Words If $P(x)$ is a polynomial function with integral coefficients, then every rational zero of $P(x) = 0$ is of the form $\frac{p}{q}$, a rational number in simplest form, where p is a factor of the constant term and q is a factor of the leading coefficient.

Example Let $f(x) = 6x^4 + 22x^3 + 11x^2 - 80x - 40$. If $\frac{4}{3}$ is a zero of $f(x)$, then 4 is a factor of -40 , and 3 is a factor of 6.

Corollary to the Rational Zero Theorem

If $P(x)$ is a polynomial function with integral coefficients, a leading coefficient of 1, and a nonzero constant term, then any rational zeros of $P(x)$ must be factors of the constant term.

$$\text{Possible Rational Roots} = \frac{\text{factors of the constant}}{\text{factors of the lead coefficient}} \quad \begin{matrix} p \\ q \end{matrix}$$

1) List all of the possible rational zeros of $g(x) = 3x^3 - 4x + 10$

p = factors/divisors of

$$= \pm \quad , \pm \quad , \pm \quad , \pm$$

q = factors/divisors of

$$= + \quad , \quad +$$

Possible rational roots/zeros = $\frac{p}{q}$

$$= \pm \quad , \pm - , \pm \quad , \pm - , \quad , \pm - , \quad , \pm -$$

1) List all of the possible rational zeros of $g(x) = x^3 - 4x^2 + x + 6$

p = factors/divisors of

$$= \pm \quad , \pm \quad , \pm \quad , \pm$$

q = factors/divisors of

$\equiv \pm$

$$\text{Possible rational roots/zeros} = \frac{p}{q}$$

$$= \pm \dots \pm \pm \pm \pm$$