

Forces and motion revision

Linear motion

$$\text{_____} = \frac{\text{distance}}{\text{time}}$$

_____ is the rate of change of distance. _____ in Physics means divide by time. The S.I. unit of speed is _____. _____ is a _____ quantity because it has only magnitude also called _____ and no _____.

$$\text{_____} = \frac{\text{displacement}}{\text{time}}$$

_____ is the rate of change of displacement. _____ is a vector quantity since it has both _____ and direction. The S.I. unit of _____ is m/s.

Equations of motion

$$1. \text{ } = \frac{v-u}{t}$$

$$2. \text{ } s = u + \frac{1}{2}a^2$$

$$3. \text{ } v^2 = \text{ }^2 + 2a$$

Questions on equations of motion

1. An object starts from rest and increases its velocity uniformly to 10

m/s in 5 seconds.

a. $u = \text{ } \text{m/s}$

b. $v = \text{ } \text{m/s}$

c. $a = \text{ } \text{m/s}^2$

d. $s = \text{ } \text{m}$

2. An object is moving at 5 m/s. It accelerates uniformly at 2 m/s^2 for 3.2 seconds.

a. $u = \underline{\hspace{2cm}}$ m/s

b. $v = \underline{\hspace{2cm}}$ m/s

c. $s = \underline{\hspace{2cm}}$ m

3. An object is moving at 2 m/s. It accelerates uniformly to 4 m/s and within this time it covers 15 m.

a. $a = \underline{\hspace{2cm}}$ m/s 2

b. $t = \underline{\hspace{2cm}}$ s

Graphs of motion

1. Displacement – Time graph

a. The gradient = _____

b. If the gradient is positive the object is moving _____ from the initial point. If the gradient is negative the object is moving _____ the initial point.

2. Velocity – Time graph

a. The gradient = _____

b. If the gradient is positive, the _____ is increasing. If the gradient is negative the _____ is _____, in other words, the object is _____.

c. The _____ = displacement covered.