

COMPOUND INTEREST PRACTICE

1) \$1000 invested at 10% per year for 3 years, compounded annually

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$

2) \$1000 invested at 15% per year for 6 years, compounded monthly

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$

3) \$1000 invested at 1% per year for 20 years, compounded weekly

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$

4) \$1000 invested at 5% per year for 6 years, compounded annually

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$

5) \$2500 invested at 8% per year for 4 years, compounded biweekly

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$

6) \$500 invested at 3% per year for 20 years, compounded daily

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$

7) \$200 invested at 2% per year for 40 years, compounded annually

$$P = \quad r = \quad \text{years} = \quad A = P(1 + i)^n$$

$$A = \quad i = \quad n = \quad I = \quad I = A - P$$