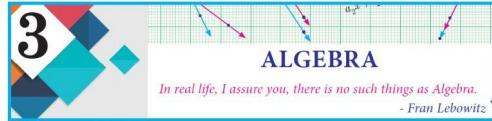


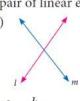
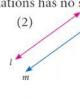
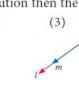
NAME : _____

CLASS & SEC. : _____

STD – 9 – MATHS – ONE MARK



? Multiple choice questions

- If $x^3 + 6x^2 + kx + 6$ is exactly divisible by $(x + 2)$, then $k = ?$
(1) -6 (2) -7 (3) -8 (4) 11
- The root of the polynomial equation $2x + 3 = 0$ is
(1) $\frac{1}{3}$ (2) $-\frac{1}{3}$ (3) $-\frac{3}{2}$ (4) $\frac{2}{3}$
- The type of the polynomial $4 - 3x^3$ is
(1) constant polynomial (2) linear polynomial
(3) quadratic polynomial (4) cubic polynomial.
- If $x^4 + 51$ is divided by $x + 1$, then the remainder is
(1) 0 (2) 1 (3) 49 (4) 50
- The zero of the polynomial $2x + 5$ is
(1) $\frac{5}{2}$ (2) $-\frac{5}{2}$ (3) $\frac{2}{5}$ (4) $-\frac{2}{5}$
- The sum of the polynomials $p(x) = x^3 - x^2 - 2$, $q(x) = x^2 - 3x + 1$
(1) $x^3 - 3x - 1$ (2) $x^3 + 2x^2 - 1$ (3) $x^3 - 2x^2 - 3x$ (4) $x^3 - 2x^2 + 3x - 1$
- Degree of the polynomial $(y^3 - 2)(y^3 + 1)$ is
(1) 9 (2) 2 (3) 3 (4) 6
- Let the polynomials be
(A) $-13q^5 + 4q^4 + 12q$ (B) $(x^2 + 4)(x^2 + 9)$
(C) $4q^8 - q^6 + q^2$ (D) $-\frac{5}{7}y^3 + y^2 + y^3$
Then ascending order of their degree is
(1) A,B,C,D (2) A,B,C,D (3) B,C,D,A (4) B,A,C,D
- If $p(a) = 0$ then $(x - a)$ is a _____ of $p(x)$
(1) divisor (2) quotient (3) remainder (4) factor
- Zeros of $(2 - 3x)$ is _____
(1) 3 (2) 2 (3) $\frac{2}{3}$ (4) $\frac{3}{2}$
- Which of the following has $x - 1$ as a factor?
(1) $2x - 1$ (2) $3x - 3$ (3) $4x - 3$ (4) $3x - 4$
- If $x - 3$ is a factor of $p(x)$, then the remainder is
(1) 3 (2) -3 (3) $p(3)$ (4) $p(-3)$
- $(x + y)(x^2 - xy + y^2)$ is equal to
(1) $(x + y)^3$ (2) $(x - y)^3$ (3) $x^3 + y^3$ (4) $x^3 - y^3$
- $(a + b - c)^2$ is equal to _____
(1) $(a - b + c)^2$ (2) $(-a - b + c)^2$ (3) $(a + b + c)^2$ (4) $(a - b - c)^2$
- If $(x + 5)$ and $(x - 3)$ are the factors of $ax^2 + bx + c$, then values of a, b and c are
(1) 1,2,3 (2) 1,2,15 (3) 1,2, -15 (4) 1, -2,15
- Cubic polynomial may have maximum of _____ linear factors
(1) 1 (2) 2 (3) 3 (4) 4
- Degree of the constant polynomial is _____
(1) 3 (2) 2 (3) 1 (4) 0
- Find the value of m from the equation $2x + 3y = m$. If its one solution is $x = 2$ and $y = -2$.
(1) 2 (2) -2 (3) 10 (4) 0
- Which of the following is a linear equation
(1) $x + \frac{1}{x} = 2$ (2) $x(x - 1) = 2$ (3) $3x + 5 = \frac{2}{3}$ (4) $x^3 - x = 5$
- Which of the following is a solution of the equation $2x - y = 6$
(1) (2,4) (2) (4,2) (3) (3, -1) (4) (0,6)
- If (2,3) is a solution of linear equation $2x + 3y = k$ then, the value of k is
(1) 12 (2) 6 (3) 0 (4) 13
- Which condition does not satisfy the linear equation $ax + by + c = 0$
(1) $a \neq 0, b = 0$ (2) $a = 0, b \neq 0$
(3) $a = 0, b = 0, c \neq 0$ (4) $a \neq 0, b \neq 0$
- Which of the following is not a linear equation in two variable
(1) $ax + by + c = 0$ (2) $0x + 0y + c = 0$
(3) $0x + by + c = 0$ (4) $ax + 0y + c = 0$
- The value of k for which the pair of linear equations $4x + 6y - 1 = 0$ and $2x + ky - 7 = 0$ represents parallel lines is
(1) $k = 3$ (2) $k = 2$ (3) $k = 4$ (4) $k = -3$
- A pair of linear equations has no solution then the graphical representation is
(1)  (2)  (3)  (4)
- If $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ where $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ then the given pair of linear equation has _____ solution(s)
(1) no solution (2) two solutions (3) unique (4) infinite
- If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ where $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ then the given pair of linear equation has _____ solution(s)
(1) no solution (2) two solutions (3) infinite (4) unique
- GCD of any two prime numbers is _____
(1) -1 (2) 0 (3) 1 (4) 2
- The GCD of $x^4 - y^4$ and $x^2 - y^2$ is
(1) $x^4 - y^4$ (2) $x^2 - y^2$ (3) $(x + y)^2$ (4) $(x + y)^4$

