


More Protein Synthesis Practice

Protein synthesis is the process where a sequence of DNA is used to build a protein from individual amino acids. The first step in this process is called **TRANSCRIPTION**, where a coding region of DNA is converted to messenger RNA (mRNA). During transcription, mRNA is made from the DNA sequence following the base pair rule, except RNA does not contain the base **Thymine**, but instead has **Uracil**. The mRNA then leaves the nucleus and goes to a ribosome in the cell's cytoplasm. The ribosome reads the message three bases at a time, called a **CODON**. Each codon will specify a single amino acid. The amino acids are joined together and folded into a protein, a process called **TRANSLATION**

Key Points

- DNA is used to make a copy of mRNA (transcription)
- mRNA leaves the nucleus and goes to ribosomes
- 3 bases = codon
- 1 codon = a single amino acid
- A chain of amino acids = a protein
- Protein synthesis is a combination of the processes of transcription AND translation

Second base in codon			
First base in codon		Third base in codon	
U	C	A	G
U	UUU Phe	UCU	UAU Tyr
	UUC	UCC	UAC Ser
	UUA	UCA	UAA Stop
	UUG	UCG	UAG Stop
C	CUU	CCU	CAU His
	CUC	CCC	CAC His
	CUA	CCA	CAA Gln
	CUG	CCG	CAG Gln
A	AUU	ACU	AAU Asn
	AUC	ACC	AAC Asn
	AUA	ACA	AAA Lys
	AUG Met or start	ACG	AAG Lys
G	GUU	GCU	GAU Asp
	GUC	GCC	GAC Asp
	GUA	GCA	GAA Glu
	GUG	GCG	GAG Glu

1. Use the codon chart to write the amino acid that corresponds to each codon found in mRNA:

C C C _____

A G U _____

C A G _____

U A C _____

G A A _____

C G U _____

U U U _____

C C A _____

2. Write a CODON that corresponds with each amino acid. ***There may be more than one.*** The full names are written, but the codon chart only shows the first three letters.

proline _____

glycine _____

valine _____

phenylalanine _____

histidine _____

arginine _____

3. A single codon is used to signal the beginning of protein synthesis. It is commonly called the START CODON.

Locate the start codon on the chart. What are the three bases of this codon? _____

4. There are three codons that signal the end of synthesis, these are called STOP codons.

What are the three stop codons? _____

5. For each sequence of DNA is shown. Write the complementary RNA sequence underneath the letters, then use the codon chart to determine the amino acid sequence:

DNA → T A C C A T G G A A T T A C T

RNA →

Amino Acids →

DNA → T T C A A T G G T C T A G G G

RNA →

Amino Acids →

DNA → A C A T T T C A G A C C G T C

RNA →

Amino Acids →