Displacement Vs Displacement

1. Determine the distance and displace covered in the following photos

	Distance: Displacement:	Distance:
40 meters		213
Example answer:	5	
If: $= 5 \text{ meters}^2$		NE R

A skater increases her velocity from 2.0 m/s to 10.0 m/s in 3.0 seconds. What is the skater's acceleration?

Looking for Acceleration of the skater	Solution
Given Beginning speed = 2.0 m/s Final speed = 10.0 m/s Change in time = 3 seconds	Acceleration = $\frac{10.0 \text{ m/s} - 2.0 \text{ m/s}}{3 \text{ s}} = 2.7 \text{ m/s}^2$ The acceleration of the skater is 2.7 meters per
Relationship $\alpha = \frac{v_2 - v_1}{t}$	second per second.

2. A car accelerates at a rate of 3.0 m/s². If its original speed is 8.0 m/s, how many seconds will it take the car to reach a final speed of 25.0 m/s?

Looking for	Solution
The time to reach the final speed.	Time = $\frac{25.0 \text{ m/s} - 8.0 \text{ m/s}}{25.0 \text{ m/s}} = 5.7 \text{ s}$
Given Beginning speed = 8.0 m/s; Final speed = 25.0 m/s Acceleration = 3.0 m/s ²	3.0 m/s ² The time for the car to reach its final speed is 5.7 seconds.
Relationship $t = \frac{v_2 - v_1}{\alpha}$	

Calculate and answer the following including the unis (example: 30 m/s/s)

1	While traveling along a highway a driver slows from 24 m/s to 15 m/s in 12 seconds. What is the automobile's acceleration? (Remember that a negative value indicates a slowing down or deceleration.) A parachute on a racing dragster opens and changes the speed of the car from 85 m/s to 45 m/s in a period of 4.5 seconds. What is the acceleration of the dragster?		
	The table below includes data for the table and determine the account of the account of the table and determine the account of the table and	For a ball rolling down a hill. Fill in the missing data values in eleration of the rolling ball.	
	Time (seconds)	Speed (km/h)	
	0 (start)	0 (start)	
ı	2	3	
		6	
		9	
	8		
L	10	15	
Ac	celeration =		
		0.0 m/s encounters an emergency and comes to a complete see for the car to stop if it decelerates at -4.0 m/s ² ?	
	If a car can go from 0 to 60 mi/seconds if its starting speed were	Thr in 8.0 seconds, what would be its final speed after 5.0 re 50 mi/hr?	

Newton's Second Law Equation

acceleration (in m/s²) =
$$\frac{\text{net force (in N)}}{\text{mass (in kg)}}$$
 $\alpha = \frac{1}{m}$

Calculate and answer the following including the unis (example: 30 m/s/s, 40 N, 50 kg)

6.	How much force is needed to accelerate a 66 kg skier at 2 m/s ² ?

- 7. What is the force on a 1000 kg elevator that is falling freely at 9.8 m/s²?
- 8. What is the acceleration of a 50 kg object pushed with a force of 500 newtons?
- 9. The mass of a large car is 1000 kg. How much force would be required to accelerate the car at a rate of 3 m/s²?
- $10.\ A\ 50\ kg$ skater pushed by a friend accelerates $5\ m/s^2$. How much force did the friend apply?

