- **1.** Write a fraction for each description.
 - a. A fraction which has a six in the denominator and a four in the numerator.
 - **b.** A fraction that is equal to 1 and contains a 5 in the numerator.
 - c. A fraction that is equivalent to one-half but has a 4 in the denominator.
- **2.** Circle the two figures that show equivalent fractions. Write the fractions represented by the two equivalent models. Explain how you know the two circled fractions are equivalent.

3. Use the blank models to create fractions that are equivalent to $\frac{1}{3}$. Write each equivalent fraction underneath the model.

4. Create a fraction that is equivalent to $\frac{3}{4}$. Use the	ne rectang	ular mode	els to show
that your fraction is equivalent to $\frac{3}{4}$.			

5. Create three models that show different fractions equivalent to $\frac{1}{2}$. Write each equivalent fraction.

6. Draw a line to connect each pair of equivalent fractions.

7. Mark says $\frac{1}{2}$ and $\frac{3}{4}$ are equivalent fractions. The models showing his thinking have an error. Explain the error in Mark's work.

Mark's Work
$\frac{1}{\frac{2}{3}}$ $\frac{1}{2} = \frac{3}{4}$

6 Equivalent Fractions

B2 Lesson 1

8. Use the number lines to answer the questions below.

- **a.** Which fraction is equivalent to $\frac{3}{8}$?
- **b.** Name two different fractions that are equivalent to $\frac{12}{16}$.
- c. How can you use a number line to determine if fractions are equivalent?
- $\mathbf{9}_{ullet}$ Circle the example below that does not show how to form an equivalent fraction to $\frac{2}{3}$ using multiplication.

$$\frac{2\times3}{3\times3}=\frac{6}{9}$$

$$\frac{2\times 2}{3\times 3} = \frac{4}{9}$$

$$\frac{2 \times 3}{3 \times 3} = \frac{6}{9} \qquad \qquad \frac{2 \times 2}{3 \times 3} = \frac{4}{9} \qquad \qquad \frac{2 \times 10}{3 \times 10} = \frac{20}{30}$$

10. Write three different fractions that are equivalent to $\frac{4}{5}$. Use words and/or numbers to show how you determined your answer.

11. Determine if each pair of fractions is equivalent. Circle YES or NO. *If they are equivalent*, write the fraction equal to one that was used to create the second fraction in the pair.

a.
$$\frac{3}{8}$$
 and $\frac{6}{16}$ **YES NO** Fraction Used:

b.
$$\frac{7}{10}$$
 and $\frac{14}{100}$ **YES NO** Fraction Used:

c.
$$\frac{1}{4}$$
 and $\frac{5}{20}$ YES NO Fraction Used:

12. Hudson told his mom that he can create many equivalent fractions by just doubling the numerator and denominator over and over again. Does Hudson's method work? Use words, numbers and/or models to support your answer.

B2 Lesson 1