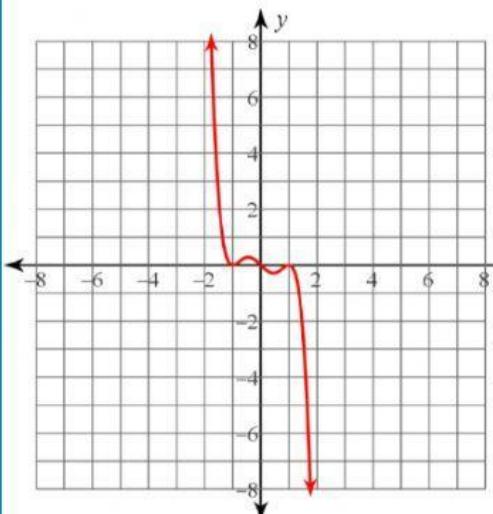


NAME _____

QUARTER _____

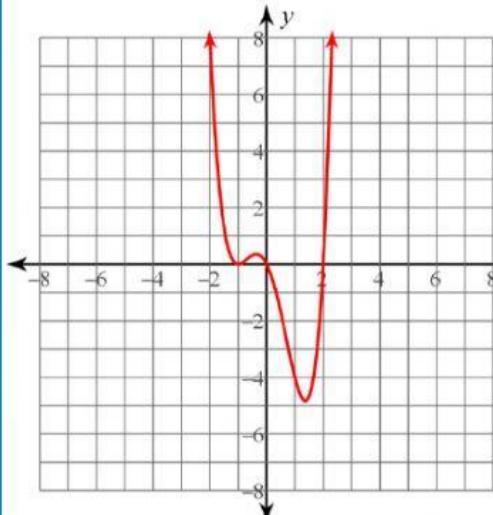

GRADE & SECTION _____

DATE _____

Activity: Graph of a Polynomial Function

Describe the given graph of a polynomial function.

1. $f(x) = -x^5 + 2x^3 - x$


end behavior of the graph → _____
 Degree → _____
 Sign of the leading coefficient → _____
 no. of turning points → _____
 y-intercept → $y =$ _____
 x-intercepts → $x =$ _____, _____, _____
 multiplicity of zeros → _____

The graph _____ the x-axis at _____ → _____ has _____ multiplicity

The graph _____ the x-axis at _____ → _____ has _____ multiplicity

The graph _____ the x-axis at _____ → _____ has _____ multiplicity

2. $f(x) = x^4 - 3x^2 - 2x$

end behavior of the graph → _____
 Degree → _____
 Sign of the leading coefficient → _____
 no. of turning points → _____
 y-intercept → $y =$ _____
 x-intercepts → $x =$ _____, _____, _____, _____
 multiplicity of zeros → _____

The graph _____ the x-axis at _____ → _____ has _____ multiplicity

The graph _____ the x-axis at _____ → _____ has _____ multiplicity

The graph _____ the x-axis at _____ → _____ has _____ multiplicity

How many attempts? ____.
 How well did you do?

Need help!

Just OK!

Splendid

I FEEL THAT...