

1. Lithium has two naturally occurring isotopes, ^6Li and ^7Li , with isotopic masses of 6.0151 amu and 7.0160 amu respectively. The atomic mass of lithium is 6.9409 amu. What is percentage abundance of ^6Li ?

- A. 92.5 C. 14.3
B. 85.7 D. 7.5

2. Calculate the concentration by mass percentage (%w/w) of 14.9g of sodium chloride in 94.1g of water.

- A. 6.3% C. 15.8%
B. 13.7% D. 86.3%

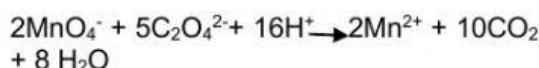
3. The composition of oxalic acid is 2.27 % H, 26.65 % carbon and 71.08 % oxygen. The molar mass of oxalic acid is 90 g/mol. What is its molecular formula?

- A. CHO C. $\text{C}_2\text{H}_2\text{O}_4$
B. $\text{C}_2\text{H}_4\text{O}_2$ D. CH_3O

4. Calculate the mole fraction of benzene (C_6H_6) in a solution of 46.8 g benzene and 36.8 g of toluene (C_7H_8)

- A. 0.4 C. 0.7
B. 0.6 D. 0.5

5. Balance the following redox reaction in acidic solution.


The sum of coefficients is

- A. 5 C. 12
B. 6 D. 10

6. A sulphuric acid solution contains 66.0% H_2SO_4 by weight and has a density of 1.58 g/mL. How many moles of the acid are present in 1.00 L of the solution?

- A. 10.64 C. 9.05
C. 1.02 D. 0.67

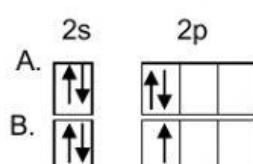
7. A 25.0 mL potassium oxalate, $\text{K}_2\text{C}_2\text{O}_4$ solution is titrated with 50.0 mL of potassium permanganate, KMnO_4 with concentration 0.42 M solution in acidic medium according to the following equation:

Calculate the concentration of $\text{K}_2\text{C}_2\text{O}_4$ solution used in the titration

- A. 1.3 M C. 2.1 M
B. 1.6 M D. 2.5 M

8. Calculate the mole fraction of CuCl_2 in a solution by dissolving 0.30 mol CuCl_2 in 100 g of water.

- A. 0.50 C. 1.5
B. 0.080 D. 0.051


9. How much energy would be released as an electron of a hydrogen atom moves from $n = 4$ to $n = 3$?

- A. $1.53 \times 10^{-17} \text{ J}$
B. $1.74 \times 10^{-19} \text{ J}$
C. $2.18 \times 10^{-18} \text{ J}$
D. $1.06 \times 10^{-19} \text{ J}$

10. According to the Bohr model for hydrogen atom, the energy required to excite an electron from $n= 2$ to $n= 3$ is _____ the energy required to excite an electron from $n=1$ to $n= 2$.

- A. equal to
B. less than
C. greater than
D. greater than or equal to

11. Select the valence electronic configuration that violates the Hund's Rule for an atom in its ground state.

