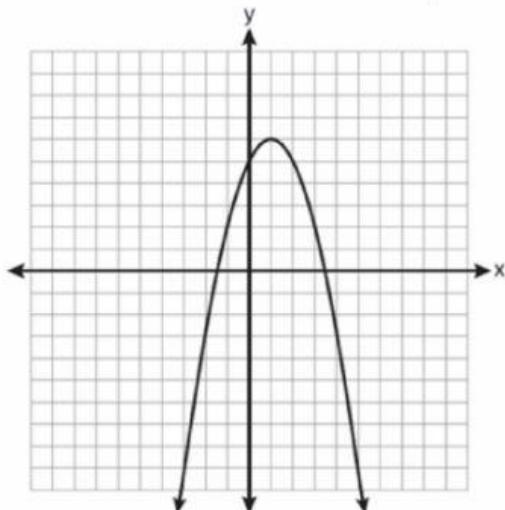


What are the coordinates of the turning point of the parabola whose equation is $y = x^2 - 4x + 4$?

(1) (2, 0) (2) (-2, 16) (3) (2, -4) (4) (-2, 0)

What is the equation for the axis of symmetry for : $y = -x^2 - 2x - 1$

(1) $x = 1$ (2) $x = -1$ (3) $y = 1$ (4) $y = -1$


If the roots of a quadratic equation are -2 and 3, the equation can be written as:

1) $(x - 2)(x + 3) = 0$ 3) $(x + 2)(x + 3) = 0$
2) $(x + 2)(x - 3) = 0$ 4) $(x - 2)(x - 3) = 0$

The equation of the axis of symmetry of the graph of $y = 2x^2 - 3x + 7$ is

(1) $x = \frac{3}{4}$ (2) $y = \frac{3}{4}$ (3) $x = \frac{3}{2}$ (4) $y = \frac{3}{2}$

Ex7: What are the vertex and axis of symmetry of the parabola shown in the graph below?

(1) Vertex (1, 6); axis of symmetry: $y = 1$
(2) Vertex (1, 6); axis of symmetry: $x = 1$
(3) Vertex (6, 1); axis of symmetry: $y = 1$
(4) Vertex (6, 1); axis of symmetry: $x = 1$