

NAME:

CLASS:

DATE:

BIOLOGY REVISION**TOPIC: ENZYMES****Multiple Choice Questions:**

1. Four tubes containing 10cm^3 of 1% starch solution were treated in different ways and then mixed with saliva. After 30 minutes, 1cm^3 of iodine in potassium iodide solution was added to each tube.

In which tubes were the contents a yellow-brown colour?

[Nov 2008, Q3]

	Tube incubated at 35°C	Tube incubated at 75°C	Tube incubated at pH 2.5	Tube incubated at pH 6.9
A	✓		✓	
B	✓			✓
C		✓		✓
D		✓	✓	

Key

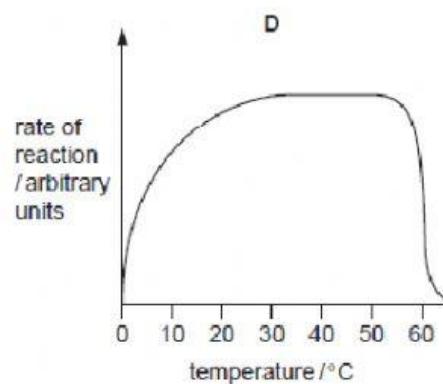
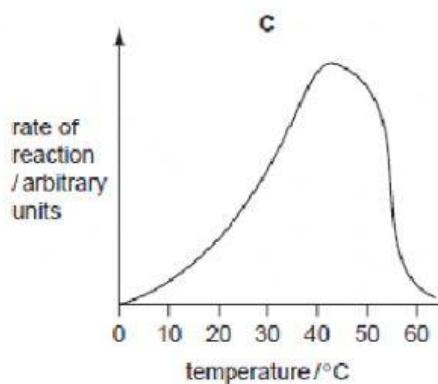
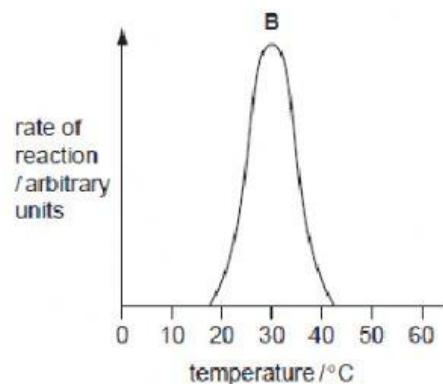
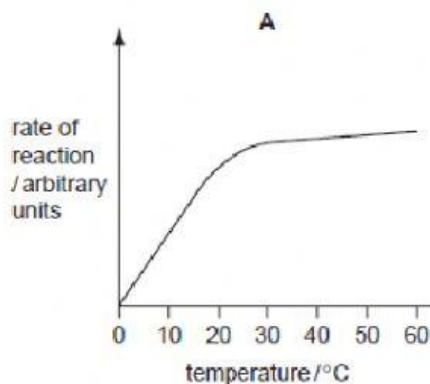
✓ = yellow-brown colour

2. According to the lock and key hypothesis, which is the lock and which is the key for the enzyme lipase?

[Nov 2008, Q4]

	Key	Lock
A	Fatty acids	Lipids
B	Lipase	Lipids
C	Lipase	Fatty acids
D	Lipids	Lipase

3. Protease breaks down proteins into amino acids.





[Nov 2009, Q4]

In the 'lock and key' hypothesis, what is the lock and what is the key?

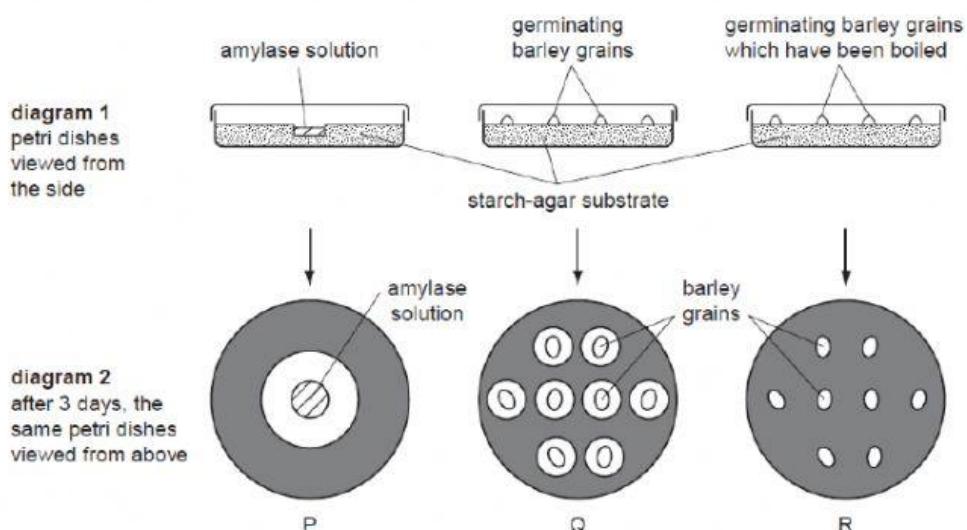
	Lock	Key
A	Amino acid	Protease
B	Protease	Amino acid
C	Protease	Protein
D	Protein	Protease

4. Which graph shows the effect of temperature on enzyme-controlled reactions?

[Nov 2010, Q13]

5. According to the lock and key hypothesis, which is the lock and which is the key for the enzyme lipase?

[Nov 2012, Q4]


	Key	Lock
A	Fatty acids	Lipids
B	Lipase	Lipids
C	Lipase	Fatty acids
D	Lipids	Lipase

6. In an enzyme action, where is the active site and where are the lock and the key?

[Nov 2013, Q4]

	Active site	Key	Lock
A	On the enzyme	On the substrate	On the enzyme
B	On the enzyme	On the enzyme	On the substrate
C	On the substrate	On the enzyme	On the substrate
D	On the substrate	On the substrate	On the enzyme

7. In an experiment to investigate the **effects of heat** on germinating barley grains, three petri dishes were set up as shown in diagram 1 and left for 3 days. A solution of iodine in potassium iodide was then added to the starch-agar substrate. The results are shown in diagram 2, in which the shaded areas went blue/black, indicating the presence of starch.

Which is the **best** explanation of the results?

[June 2008, Q3]

- A Amylase is produced by barley grains that have been boiled
- B Amylase from barley grains is denatured when they are boiled
- C Germinating grains prevent iodine from staining starch blue/black
- D Starch from the substrate is used by the grains as an energy source

8. Enzyme action can be explained by the lock and key hypothesis.

[June 2008, Q4]

Where is the active site and which acts as the lock or key?

	active site	lock / key
A	On the enzyme	Substrate acts as a key
B	On the enzyme	Substrate acts as a lock
C	On the substrate	Enzyme acts as a key
D	On the substrate	Enzyme acts as a lock

9. Starch is digested to maltose by the enzyme amylase.

[June 2012, Q4]

According to the 'lock and key' hypothesis, which is the 'key' and which is the 'lock'?

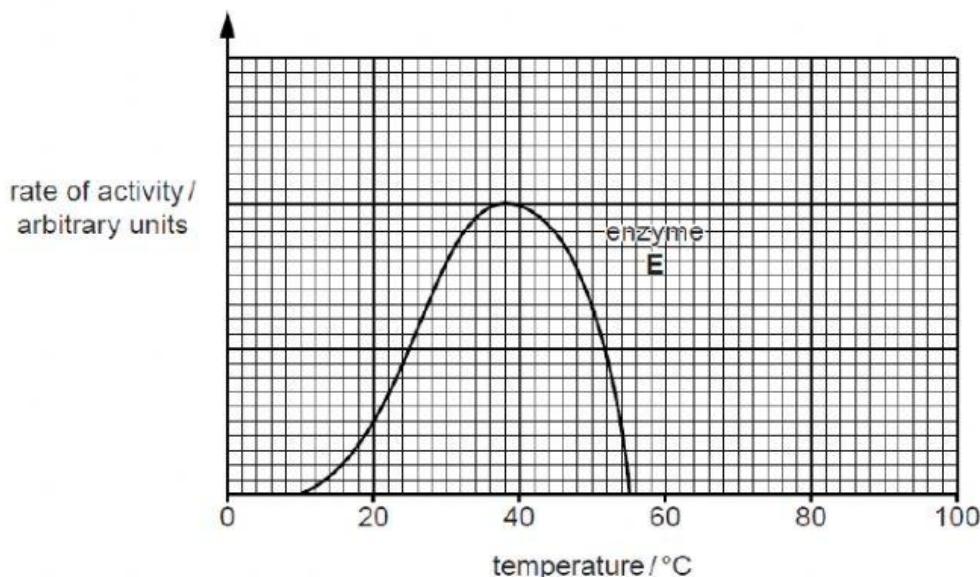
	'key'	'lock'
A	Amylase	Maltose
B	Amylase	Starch
C	Starch	Amylase
D	Starch	Maltose

10. Four test tubes, each containing 2 cm³ of amylase solution are treated as follows:

[June 2013, Q4]

- 1 boiled, then cooled to 1 °C
- 2 boiled, then cooled to 25 °C
- 3 frozen, then warmed to 1 °C
- 4 frozen, then warmed to 25 °C

10 cm³ of starch solution were then added to each tube and after 5 minutes, 2 drops of iodine solution were added to each tube.


Which row shows the results?

	1	2	3	4
A	Black	Black	Black	Yellow
B	Black	Yellow	Black	Yellow
C	Yellow	Black	Yellow	Black
D	Yellow	Yellow	Yellow	Black

Structured Questions:

1. (a) Fig. 5.1 shows the effect of temperature on the activity of enzyme E.

[June 2012, Q5]

Fig. 5.1

(i) State the optimum temperature for enzyme E _____

[1]

(ii) Suggest a possible identity for enzyme E, where it is found, and its function.

identity of enzyme E _____

where it is found _____

function _____ [3]

(iii) State the temperature where enzyme E is denatured _____ [1]

(b) Fig. 5.2 shows the effect of temperature on the activity of another enzyme, F

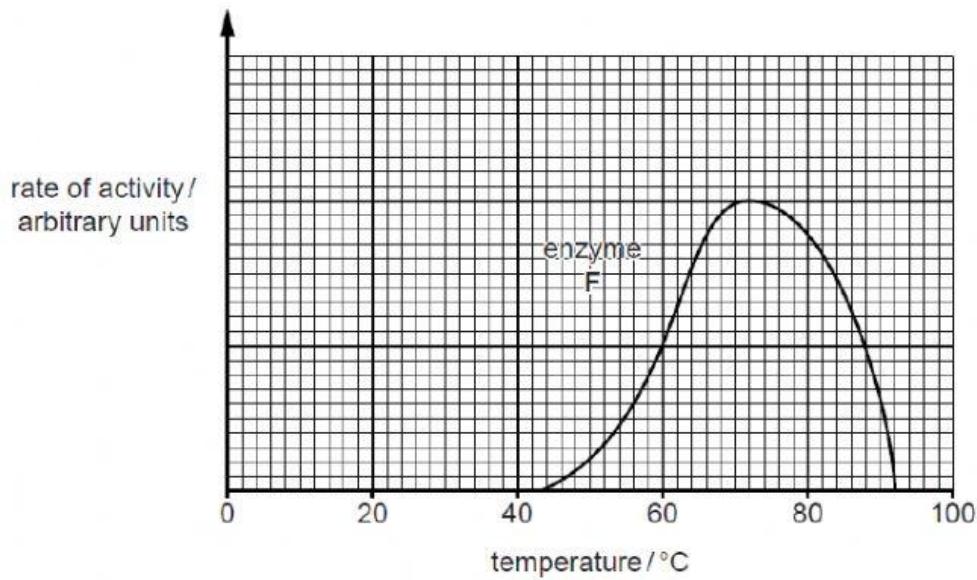


Fig. 5.2

State and explain what would happen to the activity of enzyme E at the optimum temperature for enzyme F.

[5]

[Total: 10]

2. (a) Explain what is meant by the *lock and key* hypothesis for enzyme action.

[Nov 2012, Q8]

[5]

(b) Describe how enzyme action is affected by an increase in temperature.

[5]

[Total: 10]