NMR Spectroscopy

1 (a) An aromatic compound **D**, of M_r 122, is a possible sex attractant for insects. It has the following composition by mass: C, 78.7%; H, 8.2%; O, 13.1%.

What is the molecular formula of \mathbf{D} ? Calculate and choose the correct answer from the option given below.

- A. C8H10O
- B. C₁₀H₈O
- C. C₆H₁₀O
- D. C₁₀H₆O
- (b) The NMR spectrum of D is shown below.

Use the spectrum and explanation below to deduce the structure for D. Choose the correct answer from the option given below.

Triplet at δ1 is due to CH₃ next to a CH₂.

Quartet at δ2.5 is due to CH₂ next to a CH₃.

Peak at $\delta 6.8$ is due to 4 aryl hydrogen.

Singlet at δ 5.5 is due to OH group of phenol.

The structure of D is _____

(c)	Explain what effect you would expect the addition of a small amount of D_2O to have on the NMR spectrum of ${\bf D}$.
(d)	An isomer of ${\bf D}$ shows no effect on the NMR spectrum on adding ${\bf D}_2{\bf O}$.
	Choose the structure of the isomer from the list given and suggest how its NMR spectrum would differ from that of D.
	CH ₃ CCH ₂ CH ₃ CCH ₂ CH ₃ CH ₂ OH
The	e NMR spectrum of cysteine, H ₂ NCH(CH ₂ SH)CO ₂ H, shows five absorptions.
	er shaking a solution of cysteine with a few drops of D_2O , the NMR spectrum shows only absorptions, E and F , shown below.
	E F
(i)	Identify the two types of protons responsible for the absorptions E and F .
	E
	F
(ii)	State and explain the splitting patterns of the absorptions E and F .

F

2

