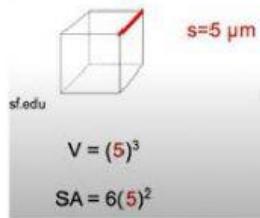


AP Topic 2.3 Cell Size Video Notes

1. All cells are dependent on _____
- Obtaining _____, - Eliminating _____, - Gain/lose _____
2. A cell's size plays a big factor in its _____
3. Cells rely upon diffusion (_____) to exchange with their _____
4. This process can be slow – nutrient may not _____
5. Look at the small and large cell diagrams in the video (around 3:00 min), which cell is more efficient with exchanging with the environment? Why? _____

6. Why is the cell above better able to exchange materials? _____
7. Cells' ability to exchange materials is dependent on its _____
8. More surface area = _____

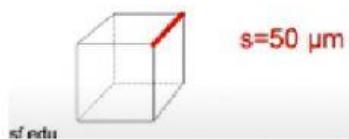

A cube-shaped "cell"

Calculating Surface area to volume.

Volume of a cube = $V = s^3$

Surface area of a cube: $SA = 6s^2$

Surface area:volume ratio: Write as $sa:v$ or sa/v


$V =$ _____

$SA =$ _____

$SA/V =$ _____

Calculate the Surface area to volume ratio for the following cell. SHOW YOUR WORK!

A cube-shaped "cell"

$V =$ _____

$SA =$ _____

$SA/V =$ _____

9. Which cell is less efficient at exchanging materials, the five-micrometer cell or the fifty-micrometer cell? Explain why. _____

Calculate the Surface area to volume ratio for the following sphere shaped cell. SHOW YOUR WORK!

A sphere-shaped "cell"


$V =$ _____

$SA =$ _____

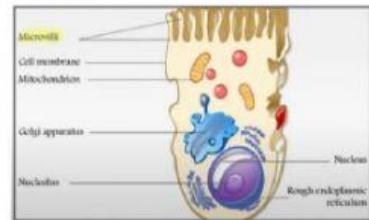
$SA/V =$ _____

Calculate the Surface area to volume ratio for the following sphere shaped cell. SHOW YOUR WORK!

A sphere-shaped "cell"

$V =$ _____

$SA =$ _____


$SA/V =$ _____

10. Higher SA:V ratio = _____

11. Some cells are specialized to _____

12. Have surfaces designed for _____

13. How do your intestinal cells look, and how do they work? _____

14. How is surface area increased in the mitochondria? _____

Created By: Chivas & Jordan Spivey