


CHEMBUDDY CHAPTER 2**2.2 QUANTUM MECHANICAL MODEL****2.3 ELECTRONIC CONFIGURATION**

CHOOSE THE CORRECT ANSWER

NO	QUESTION	ANSWER
1	The electronic configuration for element X with 7 electrons is obtained based on the following principle EXCEPT	A. The Pauli's exclusion principle B. The Aufbau principle C. The Heisenberg's uncertainty principle D. Hund's rule
2	Q is an element with proton number of 21. Write the electronic configuration of Q.	A. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$ C. $1s^2 2s^2 2p^6 3s^2 3p^1$ D. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$
3	Give a set of quantum numbers for the electrons that occupy the fourth shell in Scandium (Sc).	A. $n= 3, l=1, m=0, s=+1/2$ B. $n= 3, l=1, m=1, s= -1/2$ C. $n=4, l=0, m=1, s= +1/2$ D. $n=4, l=0, m=0, s= -1/2$
4	The Pauli Exclusion Principle states that:	A. no two electrons in different atoms can have the same set of 4 quantum numbers B. no two electrons can have the same spin, m_s C. no two electrons in the same atom can have the same set of 4 quantum numbers at the same time D. no two electrons in the same atom can occupy the same orbital at the same time
5	Nickel has 28 protons. Give a set of possible quantum number for the electron with the highest energy in Ni^{2+} ion.	A. $n=3 \ l=2 \ m= -1 \ s= -1/2$ B. $n=3 \ l=1 \ m= -1 \ s= +1/2$ C. $n=4 \ l=0 \ m= -1 \ s= +1/2$ D. $n=4 \ l=0 \ m=0 \ s= -1/2$

CHEMBUDDY CHAPTER 2**2.2 QUANTUM MECHANICAL MODEL****2.3 ELECTRONIC CONFIGURATION**

6	Ion that have the similar electronic configuration with ${}_{10}\text{Ne}$ is;	A. O^{2+} C. N^{3-} B. Mg^{2+} D. Cl^{-}
7	An atom containing eight electrons in 3d orbital are arranged according to (C1&C2)	A. Aufbau principle B. Hund's rule C. Heisenberg's Uncertainty Principle D. De Broglie's Postulates
8	Which of the following electronic configuration represent an element that form ion with a charge of 2-.	A. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2$ B. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^2$ C. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^4$ D. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^5$
9	Choose the most suitable reason of the anomaly in electronic configuration of Chromium with the proton number of 24.	A. Stability of fully filled 3d orbital. B. Stability of half-filled orbital. C. Stability of half-filled 4s orbital. D. Stability of half-filled 3d orbital.
10	Shown below are a set of quantum number of the highest energy electron in P^+ ion. Determine the electronic configuration of P atom. $n=4, l=0, m=0, s= +\frac{1}{2}$	A. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^1$ B. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^2$ C. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6$ D. $1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^2 3\text{d}^1$

