

QUIZ CHAPTER 1: MATTER

Answer all questions.

- Choose the correct definition of isotope.
 - two or more atoms of the same element with same number of protons but different number of neutrons.
 - two or more atoms of the same element with same number of protons but different number of electrons.
 - two or more atoms of the same elements with same number of nucleon but different number of neutrons.
 - two or more atoms of the same element with same number of electrons but different number of neutrons.
- Choose the isotope notation of oxygen with proton number of 8 and nucleon of 16.

A. ${}^{16}_6 O$

B. ${}^{8}_{16} O$

C. ${}^{16}_8 O$

D. ${}^{6}_{8} O$
- Mass spectrum of chlorine is shown in Figure 1. Based on Figure 1, determine the relative atomic mass for Chlorine.

A. 35.49 B. 35.33
C. 36.23 D. 36.72
- Analysis of a gaseous hydrocarbon compound gives the following mass 85.7% C and 14.3% H. Determine the empirical formula [Ar C = 12.01, Ar H = 1.01]

A. CH_2 B. C_2H_4
C. CH_4 D. C_2H_5
- The density of 95% by mass of sulphuric acid, H_2SO_4 is 1.84 g mL^{-1} . Calculate the number of moles of H_2SO_4 , [Mr $H_2SO_4 = 98.09$; $H_2O = 18.02$]

A. 0.04 B. 2.31
C. 0.97 D. 0.34

6 The density of 95% by mass of sulphuric acid, H_2SO_4 is 1.84 g mL^{-1} . Calculate the volume of H_2SO_4 solution (in Litre).

A. 0.34 B. 0.31
C. 0.024 D. 0.054

7 The density of 95% by mass of sulphuric acid, H_2SO_4 is 1.84 g mL^{-1} . Calculate the molarity of H_2SO_4 solution

A. 1.80 M B. 10.23 M
C. 17.96 M D. 15.50 M

8 2.00g of Sodium, Na is reacted with 2.45g Chlorine gas, Cl_2 to produce sodium chloride, NaCl. (Ar Na: 23; Cl : 35). Determine the limiting reactant.

A. Na B. Cl_2
C. NaCl D. Cl

9 2.00g of Sodium, Na is reacted with 2.45g Chlorine gas, Cl_2 to produce sodium chloride, NaCl. Calculate the mole of the excess reactant remaining after the reaction is completed.

A. 8.70×10^{-2} B. 6.90×10^{-2}
C. 1.80×10^{-2} D. 1.80×10^{-3}

10 2.00g of Sodium, Na is reacted with 2.45g Chlorine gas, Cl_2 to produce sodium chloride, NaCl. If 80% of NaCl is produced in the experiment, calculate the actual mass of NaCl produced.

A. 3.23 g B. 4.53 g
C. 2.32 g D. 2.62 g