

CIRCLE

(type your answer)

$$\angle BAC = x^\circ$$

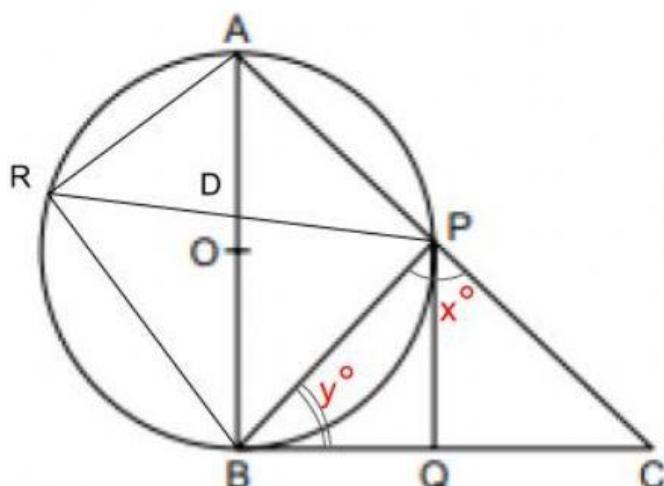
(match the reason)

$$\angle BPC = \boxed{}^\circ$$

- Angle at the center = 2x angle at circumference

$$\angle BOC = \boxed{}^\circ$$

- Angle in the semicircle


$$\angle BQC = \boxed{}^\circ$$

- Angles in same segment

If PC is the diameter

Then $\angle PBC = \boxed{}^\circ$

- Opposite angles of cyclic quadrilateral are supplementary

Given a circle with center O.

Tangent QP and QB at points P and B respectively.

$$\angle PBQ = y^\circ, \angle BAC = x^\circ$$

(Drag and drop)

90° x° y° CB CP BD PD QP LU LT VU TS

(Match the reason)

$$\angle BRP = \boxed{}^\circ$$

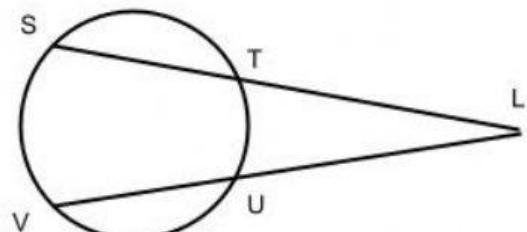
- Angle between radius and tangent.

$$\angle ARB = \boxed{}^\circ$$

- Angle between tangent and chord = Angle in alternate segment

$$\angle OBQ = \boxed{}^\circ$$

- Exterior angle of cyclic quadrilateral = Interior opposite angle.


$$QB = \boxed{}^\circ$$

- Tangents from common point.

$$\boxed{}^2 = CA \times \boxed{}$$

$$RD \times \boxed{} = \boxed{} \times AD$$

$$LS \times \boxed{} = LV \times \boxed{}$$

