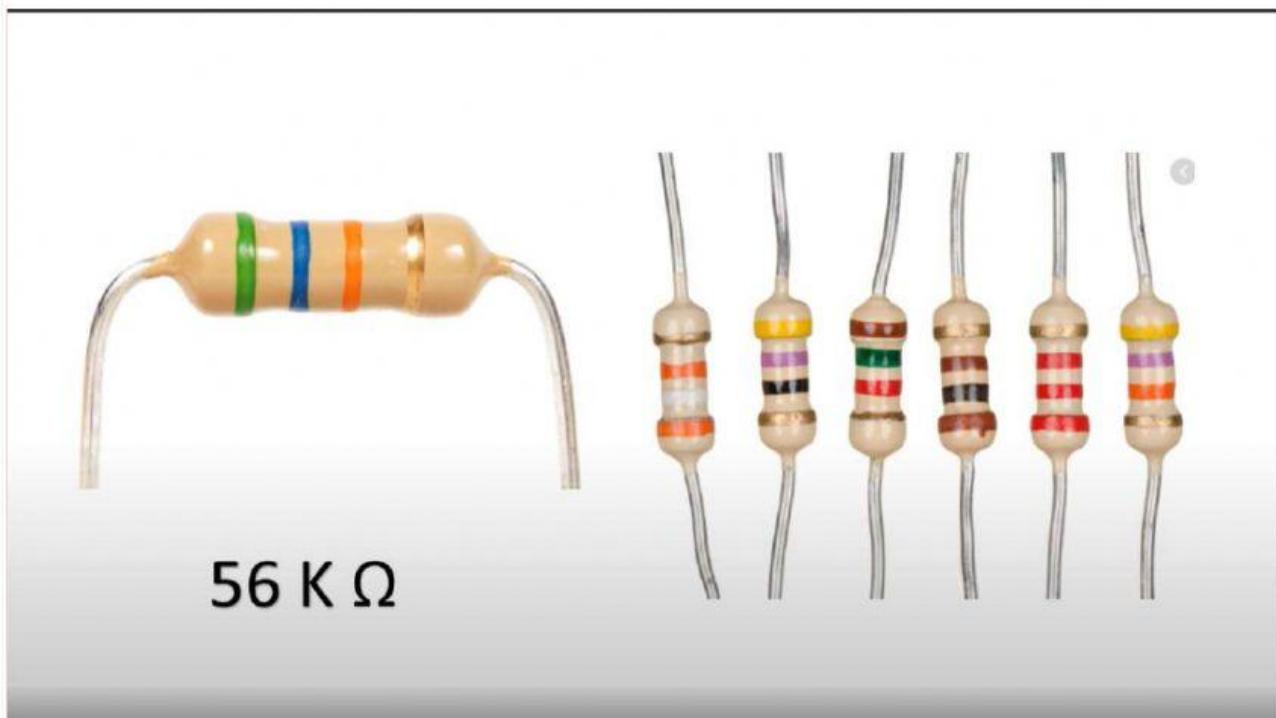


Resistor colour code

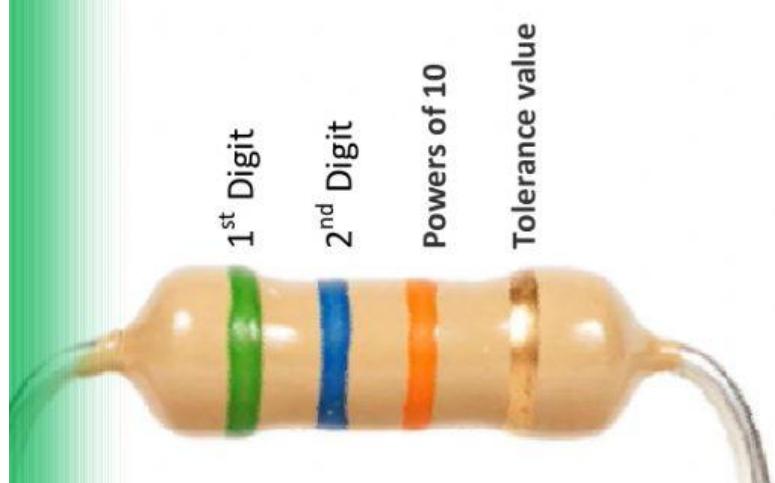
Often, the value of a resistor is indicated in coded form by colour bands marked on its body. The coding system of marking the resistor value using colored bands is known as the colour code method.

Resistor values marked on the body of resistors using the color code method

In the table below, select the color names for each number and drag and drop the corresponding color in front of them.


Number	Colour	Value to be multiplied by the third or fourth color band
0		$10^0 = 1$
1		$10^1 = 10$
2		$10^2 = 100$
3		$10^3 = 1000$
4		$10^4 = 10000$
5		$10^5 = 100000$
6		$10^6 = 1000000$
7		$10^7 = 10000000$
8		$10^8 = 100000000$
9		$10^9 = 1000000000$
-1		$10^{-1} = 0.1$
-2		$10^{-2} = 0.01$

In the table below, select the color names to resistor tolerance

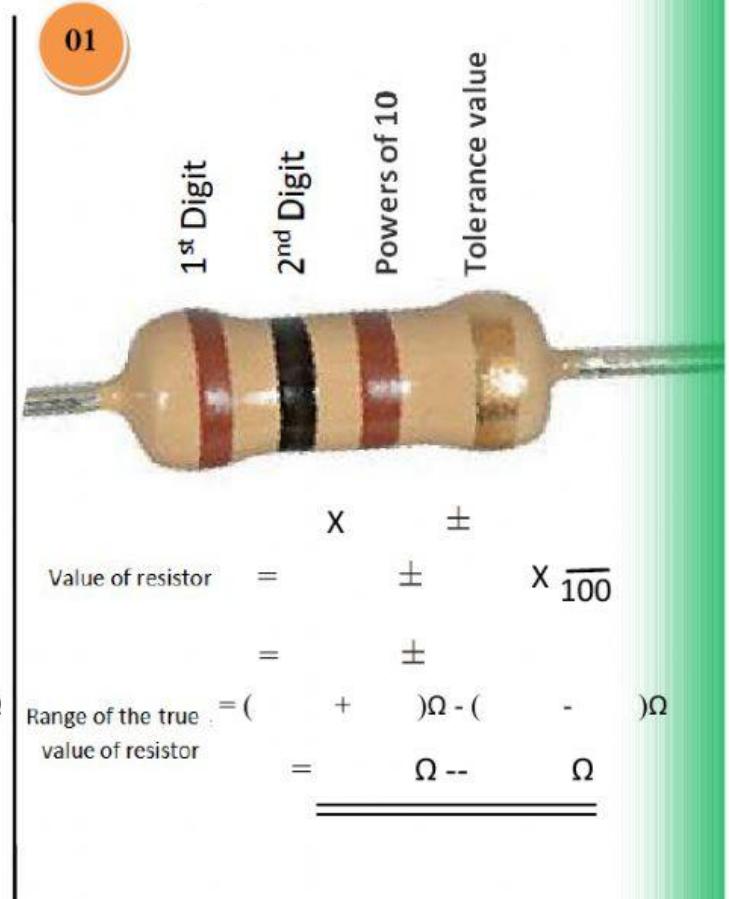

Color					No fourth color band
Tolerance value	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$	$\pm 10\%$	$\pm 20\%$

Let us calculate the resistance according to the color code.

For example:-

Fill in the blanks according to the example

$$5 \quad 6 \times 1000 \pm 5\%$$


$$\text{Value of resistor} = 56000 \pm 56000 \times \frac{5}{100}$$

$$= 56000 \pm 2800 \Omega$$

$$= (56000 + 2800)\Omega - (56000 - 2800)\Omega$$

Range of the true value of resistor

$$= 58.8 \text{ k}\Omega \text{ -- } 53.2 \text{ k}\Omega$$

02

1 st Digit	2 nd Digit	Powers of 10	Tolerance value
-----------------------	-----------------------	--------------	-----------------

$$\begin{aligned}
 \text{Value of resistor} &= \pm \times \frac{1}{100} \\
 &= \pm \\
 &+)\Omega - (-)\Omega \\
 \text{Range of the true value of resistor} &= \Omega -- \Omega
 \end{aligned}$$

$$\text{Range of the true value of resistor} = \underline{\underline{\Omega - \Omega}}$$

03

1st Digit 2nd Digit Powers of 10 Tolerance value

$$\begin{aligned}
 \text{Value of resistor} &= \frac{X \pm \frac{X}{100}}{\pm} \\
 &= \frac{(X + \frac{X}{100}) - (X - \frac{X}{100})}{2} \Omega \\
 \text{Range of the true value of resistor} &= \frac{\Omega - \Omega}{2}
 \end{aligned}$$

$$\text{Range of the true value of resistor} = \underline{\underline{\Omega - \Omega}}$$

04

1 st Digit	2 nd Digit	Powers of 10	Tolerance value
-----------------------	-----------------------	--------------	-----------------

Value of resistor =	±	$\times \frac{1}{100}$
=	±	
	+)Ω - (
Range of the true value of resistor	=	Ω -- Ω
	=	kΩ -- kΩ

$$\begin{array}{lcl} \text{Range of the true} & = & \Omega \text{ -- } \Omega \\ \text{value of resistor} & = & k\Omega \text{ -- } k\Omega \end{array}$$

05

1 st Digit	2 nd Digit	Powers of 10	Tolerance value
-----------------------	-----------------------	--------------	-----------------

	X	±	
Value of resistor =	±	$\times \frac{1}{100}$	
	=	±	
	=	Ω -	Ω
Range of the true value of resistor =	$k\Omega$ -	$k\Omega$	
	=	$M\Omega$ -	$k\Omega$

Range of the true value of resistor = $k\Omega$ - $k\Omega$ = $M\Omega$ - $k\Omega$

Created by
H.M.Wijewardana
Rambuka Maha Vidyalaya