

- Which of the following is not a quadratic equation
(a) $x^2 + 3x - 5 = 0$
(b) $x^2 + x^3 + 2 = 0$
(c) $3 + x + x^2 = 0$
(d) $x^2 - 9 = 0$
- The quadratic equation has degree
(a) 0 (b) 1 (c) 2 (d) 3
- The cubic equation has degree
(a) 1 (b) 2 (c) 3 (d) 4
- A bi-quadratic equation has degree
(a) 1 (b) 2 (c) 3 (d) 4
- The polynomial equation $x(x+1)+8=(x+2)(x-2)$ is
(a) linear equation
(b) quadratic equation
(c) cubic equation
(d) bi-quadratic equation
- The equation $(x-2)^2 + 1 = 2x - 3$ is a
(a) linear equation
(b) quadratic equation
(c) cubic equation
(d) bi-quadratic equation
- The roots of the quadratic equation $6x^2 - x - 2 = 0$ are
(a) $\frac{2}{3}, \frac{1}{2}$ **(b)** $-\frac{2}{3}, \frac{1}{2}$
(c) $\frac{2}{3}, -\frac{1}{2}$ **(d)** $-\frac{2}{3}, -\frac{1}{2}$
- The sum of the roots of the quadratic equation $3x^2 - 9x + 5 = 0$ is
(a) 3 (b) 6 (c) -3 (d) 2
- If a, p are the roots of the equation $(x-a)(x-b)+c=0$, then the roots of the equation $(x-a)(x-p)=c$ are
(a) a, b (b) a, c (c) b, c (d) none of these
- Mohan and Sohan solve an equation. In solving Mohan commits a mistake in constant term and finds the roots 8 and 2. Sohan commits a mistake in the coefficient of x . The correct roots are
(a) 9, 1
(b) -9, 1
(c) 9, -1
(d) -9, -1

Prepared by S M Maniyar(9538012268)