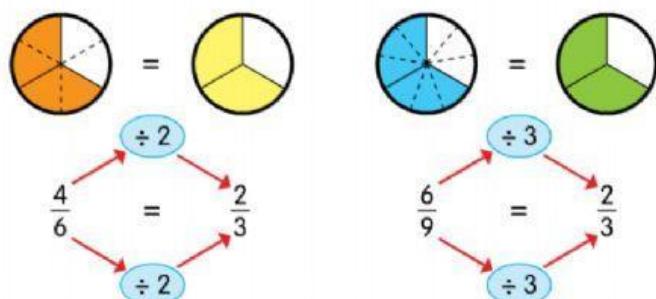


We can also represent equivalent fractions using other methods... For example, Number lines, multiplication and division (simplifying).


Number lines can be used to show fractions.

We can **multiply** the numerator and the denominator by the same number to find an equivalent fraction.

We can also find equivalent fractions by **simplifying** fractions.

$\frac{2}{3}$ cannot be further simplified.

So, $\frac{2}{3}$ is the simplest form of $\frac{4}{6}$ and $\frac{6}{9}$.

We simplify fractions by dividing the numerator and the denominator by the same number.

EXERCISES

Find the next 8 equivalent fractions of the following fractions.

(a) $\frac{1}{2} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square}$

(b) $\frac{1}{3} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square} = \frac{\square}{\square}$

Write each fraction in its simplest form.

(a) $\frac{5}{10} = \frac{\square}{\square}$

(d) $\frac{9}{12} = \frac{\square}{\square}$

(b) $\frac{8}{10} = \frac{\square}{\square}$

(e) $\frac{2}{8} = \frac{\square}{\square}$

(c) $\frac{4}{12} = \frac{\square}{\square}$

(f) $\frac{6}{9} = \frac{\square}{\square}$