

## ONE MARK TEST

P. ELANGOVAN, B.T. Assistant (Mathematics)

GOVERNMENT HIGHER SECONDARY SCHOOL

## KOLIYANUR – VILLUPURAM DISTRICT



## ENGLISH MEDIUM

## LESSON - 5

### TEST - 3

1 The slope of the line joining  $(12, 3)$ ,  $(4, a)$  is  $\frac{1}{8}$ . The value of 'a' is  
 (A) 1 (B) 4 (C)  $-5$  (D) 2

2 The equation of a line passing through the origin and perpendicular to the line  $7x - 3y + 4 = 0$  is  
 (A)  $7x - 3y + 4 = 0$  (B)  $3x - 7y + 4 = 0$  (C)  $3x + 7y = 0$  (D)  $7x - 3y = 0$

3 A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the  $Y$  axis. The path travelled by the man is  
 (A)  $x = 10$  (B)  $y = 10$  (C)  $x = 0$  (D)  $y = 0$

4 Consider four straight lines  
 (i)  $l_1$ ;  $3y = 4x + 5$  (ii)  $l_2$ ;  $4y = 3x - 1$  (iii)  $l_3$ ;  $4y + 3x = 7$  (iv)  $l_4$ ;  $4x + 3y = 2$   
 Which of the following statement is true ?  
 (A)  $l_1$  and  $l_2$  are perpendicular (B)  $l_1$  and  $l_4$  are parallel  
 (C)  $l_2$  and  $l_4$  are perpendicular (D)  $l_2$  and  $l_3$  are parallel

5 The slope of the line which is perpendicular to a line joining the points  $(0, 0)$  and  $(-8, 8)$  is  
 (A)  $-1$  (B)  $1$  (C)  $\frac{1}{3}$  (D)  $-8$

6  $(2, 1)$  is the point of intersection of two lines.  
 (A)  $x - y - 3 = 0$ ;  $3x - y - 7 = 0$  (B)  $x + y = 3$ ;  $3x + y = 7$   
 (C)  $3x + y = 3$ ;  $x + y = 7$  (D)  $x + 3y - 3 = 0$ ;  $x - y - 7 = 0$

7 If  $(5,7)$ ,  $(3,p)$  and  $(6,6)$  are collinear, then the value of  $p$  is  
(A) 3 (B) 6 (C) 9 (D) 12

8 When proving that a quadrilateral is a trapezium, it is necessary to show  
(A) Two sides are parallel. (B) Two parallel and two non-parallel sides.  
(C) Opposite sides are parallel. (D) All sides are of equal length.

9 If slope of the line  $PQ$  is  $\frac{1}{\sqrt{3}}$  then slope of the perpendicular bisector of  $PQ$  is  
(A)  $\sqrt{3}$  (B)  $-\sqrt{3}$  (C)  $\frac{1}{\sqrt{3}}$  (D) 0

10 The point of intersection of  $3x - y = 4$  and  $x + y = 8$  is  
(A)  $(5,3)$  (B)  $(2,4)$  (C)  $(3,5)$  (D)  $(4,4)$