

ONE MARK TEST

P. ELANGOVAN, B.T. Assistant (Mathematics)

GOVERNMENT HIGHER SECONDARY SCHOOL

KOLIYANUR – VILLUPURAM DISTRICT

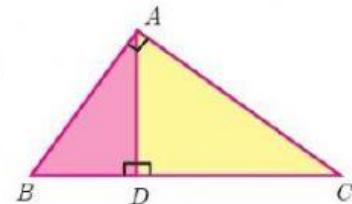
ENGLISH MEDIUM

LESSON – 4

TEST - 1

1 If in $\triangle ABC$, $DE \parallel BC$. $AB = 3.6$ cm, $AC = 2.4$ cm and $AD = 2.1$ cm then the length of AE is

(A) 1.4 cm (B) 1.8 cm (C) 1.2 cm (D) 1.05 cm

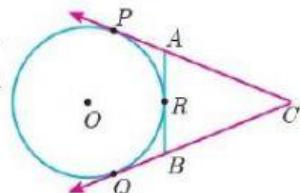

2 If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^\circ$ and $AC = 5$ cm, then AB is

(A) 2.5 cm (B) 5 cm (C) 10 cm (D) $5\sqrt{2}$ cm

3

In the adjacent figure $\angle BAC = 90^\circ$ and $AD \perp BC$ then

(A) $BD \cdot CD = BC^2$ (B) $AB \cdot AC = BC^2$
(C) $BD \cdot CD = AD^2$ (D) $AB \cdot AC = AD^2$


4 How many tangents can be drawn to the circle from an exterior point?

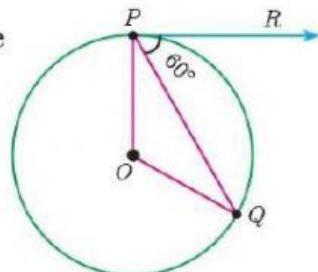
(A) one (B) two (C) infinite (D) zero

5

In figure CP and CQ are tangents to a circle with centre at O . ARB is another tangent touching the circle at R . If $CP = 11$ cm and $BC = 7$ cm, then the length of BR is

(A) 6 cm (B) 5 cm
(C) 8 cm (D) 4 cm

6 Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?


(A) 13 m (B) 14 m (C) 15 m (D) 12.8 m

7 The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36 cm and 24 cm respectively. If $PQ = 10$ cm, then the length of AB is

(A) $6\frac{2}{3}$ cm (B) $\frac{10\sqrt{6}}{3}$ cm (C) $66\frac{2}{3}$ cm (D) 15 cm

8 In figure if PR is tangent to the circle at P and O is the centre of the circle, then $\angle POQ$ is

(A) 120° (B) 100°
(C) 110° (D) 90°

9 In a $\triangle ABC$, AD is the bisector of $\angle BAC$. If $AB = 8$ cm, $BD = 6$ cm and $DC = 3$ cm. The length of the side AC is

(A) 6 cm (B) 4 cm (C) 3 cm (D) 8 cm

10 If in triangles ABC and EDF , $\frac{AB}{DE} = \frac{BC}{FD}$ then they will be similar, when

(A) $\angle B = \angle E$ (B) $\angle A = \angle D$ (C) $\angle B = \angle D$ (D) $\angle A = \angle F$