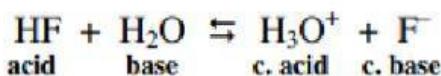


Conjugate Acid Base Pairs

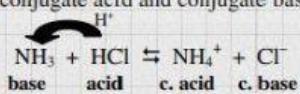

Name-

Class-

An **acid** is defined as a proton (H^+) donor while a **base** is a proton acceptor. The substance that is produced after an acid has donated its proton is called the **conjugate base** while the substance formed when a base accepts a proton is called the **conjugate acid**. The conjugate acid can donate a proton to the conjugate base, to reform the original reactants in the reverse reaction.

Acids donate protons
Bases accept protons

A proton is a hydrogen ion



In the reaction above HF is the acid and H_2O is the base. The HF has given a proton to the H_2O , forming H_3O^+ and F^- . Since the product H_3O^+ can donate a proton back to F^- it is labeled the conjugate acid, while the F^- is the conjugate base.


Example

Write an equation that shows NH_3 reacting with HCl. Label the acid, base, and conjugate acid and conjugate base.

- Write reactants and transfer a proton from the acid to the base:

For each equation. Identify the acid, the base, the conjugate acid, and the conjugate base in each of the equations.

--	--	--	--

Q2. Fill in the following table.

Acid	Base	Conjugate Acid	Conjugate Base	Equation
HNO_2	H_2O			$HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$
H_2O	F^-	HF	OH^-	
				$NH_3 + HCN \rightarrow NH_4^+ + CN^-$
		H_2O	ClO_3^-	