Conjugate Acid Base Pairs Name- Class- An acid is defined as a proton (H⁺) donor while a base is a proton acceptor. The substance that is produced after an acid has donated its proton is called the conjugate base while the substance formed when a base accepts a proton is called the conjugate acid. The conjugate acid can donate a proton to the conjugate base, to reform the original reactants in the reverse reaction. Acids donate protons Bases accept protons A proton is a hydrogen ion $$HF + H_2O \leftrightarrows H_3O^+ + F^-$$ acid base c. acid c. base In the reaction above HF is the acid and H_2O is the base. The HF has given a proton to the H_2O , forming H_3O^+ and F⁻. Since the product H_3O^+ can donate a proton back to F⁻ it is labeled the conjugate acid, while the F⁻ is the conjugate base. | Example | | |--|---| | Write an equation that shows NH ₃ reacting with HCl. Label the acid, base | e, and conjugate acid and conjugate base. | | - Write reactants and transfer a proton from the acid to the base: | NH ₃ + HCl ≒ NH ₄ ⁺ + Cl ⁻
base acid c. acid c. base | For each equation. Identify the acid, the base, the conjugate acid, and the conjugate base in each of the equations. ^{1.} $$HCl + NH_3 \rightarrow NH_4^+ + Cl^-$$ 2. $$HCO_3^- + HC1 \rightarrow H_2CO_3 + C1^-$$ ## Q2. Fill in the following table. | Acid | Base | Conjugate Acid | Conjugate Base | Equation | |------------------|--------|------------------|------------------|--| | HNO ₂ | H_2O | | | $HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$ | | H ₂ O | F | HF | OH_ | | | | | | | $NH_3 + HCN \rightarrow NH_4^+ + CN^-$ | | | | H ₂ O | ClO ₃ | |