Conjugate Acid Base Pairs

Name-

Class-

An acid is defined as a proton (H⁺) donor while a base is a proton acceptor. The substance that is produced after an acid has donated its proton is called the conjugate base while the substance formed when a base accepts a proton is called the conjugate acid. The conjugate acid can donate a proton to the conjugate base, to reform the original reactants in the reverse reaction.

Acids donate protons Bases accept protons

A proton is a hydrogen ion

$$HF + H_2O \leftrightarrows H_3O^+ + F^-$$
acid base c. acid c. base

In the reaction above HF is the acid and H_2O is the base. The HF has given a proton to the H_2O , forming H_3O^+ and F⁻. Since the product H_3O^+ can donate a proton back to F⁻ it is labeled the conjugate acid, while the F⁻ is the conjugate base.

Example	
Write an equation that shows NH ₃ reacting with HCl. Label the acid, base	e, and conjugate acid and conjugate base.
- Write reactants and transfer a proton from the acid to the base:	NH ₃ + HCl ≒ NH ₄ ⁺ + Cl ⁻ base acid c. acid c. base

For each equation. Identify the acid, the base, the conjugate acid, and the conjugate base in each of the equations.

^{1.}
$$HCl + NH_3 \rightarrow NH_4^+ + Cl^-$$

2.
$$HCO_3^- + HC1 \rightarrow H_2CO_3 + C1^-$$

Q2. Fill in the following table.

Acid	Base	Conjugate Acid	Conjugate Base	Equation
HNO ₂	H_2O			$HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$
H ₂ O	F	HF	OH_	
				$NH_3 + HCN \rightarrow NH_4^+ + CN^-$
		H ₂ O	ClO ₃	

