Triangle Angle Bisector Theorem

Given: \overline{AD} bisects $\angle CAB$

 \overline{AD} is parallel to \overline{EB}

Prove:
$$\frac{CA}{CD} = \frac{AB}{DB}$$
 (i.e., Triangle Angle Bisector Theorem)

Statements	Reasons
1. \overline{AD} is parallel to \overline{EB}	1.
2	2. Triangle Slide Splitter Theorem
3.	3. Given
4	4. Definition of Angle Bisector
5. ∠1 ≅ ∠4	5.
6.	6. Substitution (More specifically the transitive property)
7. ∠2 ≅ ∠3	7.
8. ∠4 ≅ ∠3	8.
9	9. Base Angles Theorem
10. $\frac{CA}{CD} = \frac{AB}{DB}$	10.

<u>Directions:</u> Drag and drop to complete the proof table above.

Given

$$\frac{CA}{CD} = \frac{AE}{DB} \qquad \angle 1 \cong \angle 2 \qquad \qquad \angle 2 \cong \angle 4$$

$$\overline{AD}$$
 bisects $\angle CAB$

$$\overline{AE} \cong \overline{AB}$$

Alternate Interior Angles of Parallel Lines are congruent.

Substitution

Corresponding Angles of Parallel Lines are congruent.

Substitution (More specifically the transitive property)

