Name:		Gra	de:	Date:	
CHAPTER 11 RE	EVIEW				
Gases					
SECTION 3: 0	lar mass of a ga	s at STP is the do	ensity of tha	it gas	
(b) div	rided by the mas	mass of 1 mol.	(d) divid	ed by 22.4 L.	
		$\frac{nRT}{P}$, which of t	he followin	g will cause the vol	ume to
(b) dec	creasing P		lecreasing n		
3. Two sealed fla temperature ar		ontain two differ	ent gases of	equal volume at the	same
		e two flasks mus blecules. True or		equal number of	
:	b. Th	e two samples m	ust have eq	ual masses. True or	False?
4. Use the data in	the table below	v to answer the fo	ollowing qu	estions.	
Formula		Molar mas	s (g/mol)		
N ₂		28.02			
CO		28.01			
C_2H_2		26.04		**	
Не		4.00			
Ar		39.95			
(Assume all	gases are at STP	2.)			
8-27) 8 <u>7</u>	a. W	hich gas contains	the most m	olecules in a 5.0 L	sample?
7	b. WI	hich gas is the lea	ast dense?		
	c. Wl	hich two gases ha	ive virtually	the same density?	
	d. Wi	hat is the density	of N ₂ meas	ured at STP?	

SECTION 3 con	69-64 N 070 N N N N N N N N N N N N N N N N N
5	a. How many moles of methane, CH ₄ are present in 5.6 L of the gas at STP?
	b. How many moles of gas are present in 5.6 L of any ideal gas at STP?
-	c. What is the mass of the 5.6 L sample of CH ₄ ?
5	a. A large cylinder of He gas, such as that used to inflate balloons, has a volume of 25.0 L at 22°C and 5.6 atm. How many moles of He are in such a cylinder?
	b. What is the mass of the He calculated in part a?
7. When C ₃ H ₄ co equation:	ombusts at STP, 5.6 L of C ₃ H ₄ are consumed according to the following
	$C_3H_4(g) + 4O_2(g) \rightarrow 3CO_2(g) + 2H_2O(l)$
9	a. How many moles of C ₃ H ₄ react?
82	b. How many moles of O ₂ , CO ₂ , and H ₂ O are either consumed or produced in the above reaction?
	c. How many grams of C ₃ H ₄ are consumed?
8	d. How many liters of CO ₂ are produced?
8	e. How many grams of H ₂ O are produced?

