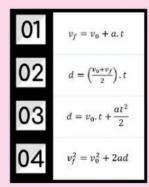
PRÁCTICA CALIFICADA DE MRUV

- RESUELVE LOS SIGUIENTES EJERCICIOS DE MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO (MRUV)
- 1. Un cuerpo parte del reposo con MRUV y avanza 50m en 5s. ¿Cuál es su aceleración?
 - ❖ MARCA LA FÓRMULA A USAR

01	$v_f = v_0 + a.t$
02	$d = \left(\frac{v_0 + v_f}{2}\right), t$
03	$d=v_0.t+\frac{at^2}{2}$
04	$v_f^2 = v_0^2 + 2ad$


- CUAL ES EL RESULTADO OBTENIDO
 - a) 12,5 m/s²
 - b) 4 m/s
 - c) 100 m/s
 - d) 4 m/s²
- 2. Un móvil parte del reposo con una aceleración de 20 m/s². Cuanto su velocidad sea 100 m/s, ¿qué distancia habrá recorrido?
 - MARCA LA FÓRMULA A USAR
 - 01 $v_f = v_0 + a.t$ 02 $d = \left(\frac{v_0 + v_f}{2}\right).t$ 03 $d = v_0.t + \frac{at^2}{2}$ 04 $v_f^2 = v_0^2 + 2ad$
- CUAL ES EL RESULTADO OBTENIDO
 - a) 2,5 m
 - b) 250 m
 - c) 25 m
 - d) 250 m/s

- 3. Un móvil con MRUV pasa por dos puntos con velocidad de 3 m/s y 7 m/s. Si dichos puntos están separados 50 m. ¿Qué tiempo empleará en su recorrido?
 - MARCA LA FÓRMULA A USAR

01 $v_f = v_0 + a.t$ 02 $d = \left(\frac{v_0 + v_f}{2}\right).t$ 03 $d = v_0.t + \frac{at^2}{2}$ 04 $v_f^2 = v_0^2 + 2ad$

- CUAL ES EL RESULTADO OBTENIDO

- a) 10 s
- b) 50 s
- c) 10 m
- d) 25 s
- 4. Un móvil viaja con una velocidad de 40 m/s. En 5 s aumenta su velocidad a 324 km/h. Encuentra la aceleración del móvil.
 - MARCA LA FÓRMULA A USAR

- CUAL ES EL RESULTADO OBTENIDO

- a) 10 m/s
- b) 10 s
- c) 100 m
- d) 10 m/s²
- 5. Un automovilista se desplaza con una velocidad de 72 km/h aplica los frenos de manera que desacelera y se detiene, esto dura 12 s. Halla la distancia que recorre en ese tiempo.
 - ❖ MARCA LA FÓRMULA A USAR

- CUAL ES EL RESULTADO OBTENIDO

- a) 120 m/s²
- b) 432 m
- c) 120 m
- d) 432 m/s