

Instructions

- ✓ Put a dash where necessary eg dipole-dipole, non-metal, induced-dipole
- ✓ If a term is two words, only leave one space between the words
- ✓ Round values off to 2 decimal places

Question 1

1.1 Intramolecular forces: Are forces inside between molecules

Intermolecular forces: Are forces inside between molecules

1.2 The types of Intramolecular forces are

1.3 covalent bonds occur between atoms of a _____ and a _____

1.4 The types of Van der Waals forces are

1.4 The other types of intermolecular forces are _____

1.5 The strongest IMF out of the above 6 is _____

1.6 The weakest IMF out of the above 6 is _____

1.7 State whether the following molecules contain lone pair/s on their terminal atom (central atom)

a) CO₂ Yes No

b) H₂O Yes No

c) NH₃ Yes No

d) BF₃ Yes No

e) PCl₃ Yes No

1.8 Within compounds the greatest repulsion force always exists between:

Bonding pair – bonding pair

Lone pair – lone pair

Lone pair – bonding pair

1.9 State the shape of the following molecules

a) HF

b) H₂S

c) BCl₃

d) CCl₄

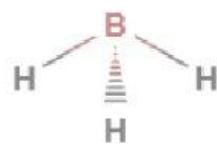
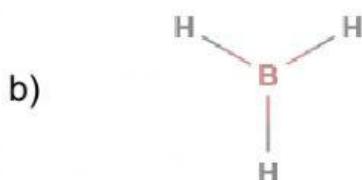
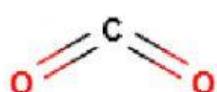
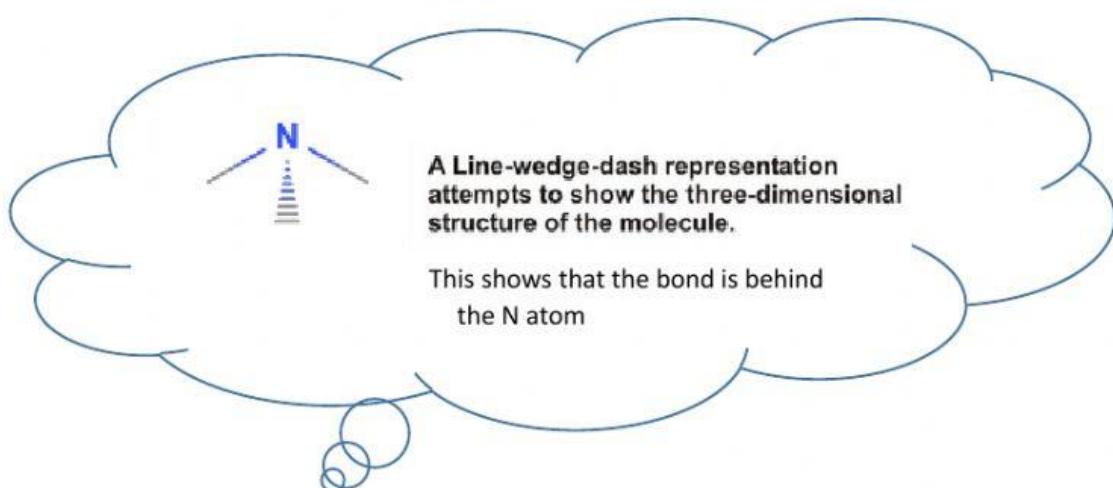
e) PF₅

Extension question:

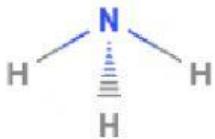
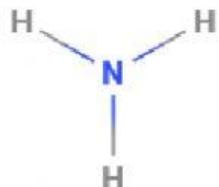
For elements to have a full valence shell they need to obey the 'octet rule'.

Which states that each element must have 8 valence electrons to have a full shell.

There are obvious exceptions – like Hydrogen which only needs 2 electrons in its 1s level to have a full valence shell.





However- notice Phosphorus in PF₅. It will end up with 10 electrons!

This is as a result of (2 words) _____



1.10 State whether the following molecules are polar or non-polar

- a) CO_2 polar non-polar
- b) H_2O polar non-polar
- c) CCl_4 polar non-polar
- d) HBr polar non-polar
- e) NH_3 polar non-polar
- f) BF_3 polar non-polar

1.10 Choose the correct Couper structure for the given molecules:

c)

Question 2

Consider the molecules He, Ne and Ar

- 2.1 Which of these would have the largest atomic radius and the largest molecular mass?
- 2.2 Which of these would thus have the:
 - 2.2.1 highest melting point
 - 2.2.2 highest viscosity:
 - 2.2.3 highest vapour pressure

Question 3

Consider the following table of bond length

Bond	Bond length (pm)
C = C	134
C - C	154
Cl - Cl	199
I - I	266

3.1 As the bond length increases the bond energy will increase decrease

3.2 As the bond order increases the bond energy will increase decrease

3.3 Consider the C≡C bond
How will the bond energy of C≡C compare to that of C=C?
Greater than Less than Equal to

Question 4

State whether the following substance will be soluble or insoluble when mixed with each other.

4.1 CH₄ in HCl soluble insoluble

4.2 HF in H₂O soluble insoluble

4.3 CH₃F in PCl₅ soluble insoluble

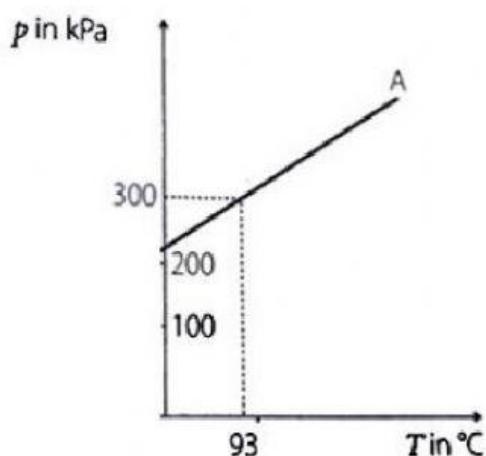
Gas laws

Question 1

An investigation is carried out to determine the relationship between the pressure and temperature of an enclosed gas. The following results were obtained from the investigation.

Pressure (kPa)	Temperature (°C)
100	-151
200	-29
300	93
400	X

1.1 Name the gas law being investigated


1.2 Name two variables that need to be controlled in this investigation (write answer in singular, not plural form)

_____ of gas

_____ of gas

1.3 The graph is drawn of pressure vs temperature and the graph is then extrapolated back to where it meets the x-axis.

What is the value of the kelvin temperature of the gas when the pressure is zero

1.4 Calculate the value of x in the table, in Kelvin and in °C.

= K

= °C

Pressure (kPa)	Temperature (°C)
100	-151
200	-29
300	93
400	X

1.5 How will the gradient of the graph be affected if a greater mass of gas is used.

INCREASE DECREASE REMAIN THE SAME

Question 2

A gas occupies a volume of 200 dm³ at a pressure of 3kPa.

If the pressure is increased to 3.6 kPa, calculate the volume the gas will occupy

= dm³ (2 decimal places)

Question 3

0.44g of a certain gas was used to determine the relationship between the volume and the temperature of the gas.

Volume (cm ³)	Temperature (°C)	Temperature (K)
35	-73	A
70	127	B
105	327	C
140	527	D
250	X	

3.1 Name the law that is being investigated here.

3.2 Convert the first four temperatures given in the table to Kelvin temperatures.

A = K

B= K

C= K

D= K

3.3 Calculate the value of X in °C

= °C (2 decimal places)

Question 4

50g of a gas occupies a volume of 30 000dm³ at a pressure of 202,9 Pa and at a temperature of 20°C. Identify what the gas is, by using suitable calculations.

(This is a two-step calculation. Write the answer to the first step in the first block and final answer in the last blocks.)

Leave no spaces between the values and the unit

= (1 decimal place)

= (0 decimal places)

Thus the element symbol is =