

Day 1 – Monday 11/4

Valence Electrons in s and p Elements

Directions: Use the periodic table to determine how many valence electrons each element has.

Element	Type	Valence Electrons =
---------	------	---------------------

—

Na	s-block
Mg	s-block
Al	p-block
Si	p-block
P	p-block
Cl	p-block
Ar	p-block

Follow-up Question:

What pattern do you notice as you move left to right across a period in the s and p blocks?

Day 2 – Tuesday 11/5

Noble-Gas Shorthand and Valence for d and f Elements

Directions: Write the noble-gas shorthand electron configuration for each element and state how many valence electrons it has.

Element	Type	Noble-Gas Shorthand	Valence e ⁻
---------	------	---------------------	------------------------

Fe	d-block		
Cu	d-block		
Ag	d-block		
W	d-block		
U	f-block		

Day 3 – Wednesday 11/6

Matching Lewis Dots to Shorthand Configurations

Directions: Match each **Lewis-dot diagram** (A–E) to its corresponding **shorthand electron configuration** below. Some of these do not match your maps/periodic table so add the electrons.

• Mn •	[Kr] 5s ¹ 4d ¹⁰
• Mo	[Ar] 4s ² 3d ⁶
• Fe •	[Xe] 6s ² 4f ¹ 5d ¹
Ag •	[Ar] 4s ² 3d ⁵
• Ce •	[Kr] 5s ¹ 4d ⁵

Day 4 – Thursday 11/7

Isotopes, Ions, and Electron Counts

Directions: Use the isotope notation to determine how many electrons each atom has.

Symbol Charge # of Electrons = protons - electrons = charge _____

⁴⁰Ca²⁺ +2

⁵⁶Fe³⁺ +3

³⁵Cl⁻ -1

²⁷Al³⁺ +3

¹⁹F⁻ -1

Follow-up Questions:

1. Which type of element tends to form **cations**?
2. Which type tends to form **anions**?