

ANTIBIOTICS (lesson 9, part 1)

Writing a summary

Below you see 15 statements about academic writing. Read them carefully and tick (✓) only the statements that refer to summaries.

1. It briefly reports the main ideas of another text in your own words.
2. It is usually shorter than the original text — about one third or less.
3. It presents the writer's personal opinion and evaluation.
4. It focuses on accuracy, objectivity, and conciseness.
5. It includes examples, arguments, and counterarguments.
6. It aims to inform, not to persuade.
7. It usually begins by naming the author and title of the original text.
8. It uses formal academic language and avoids contractions.
9. It describes methods, results, and discussion of an experiment in detail.
10. It may end with a short concluding sentence summarizing the article's overall message.
11. It avoids unnecessary details, numbers, and quotations.
12. It can include emotional or persuasive language to convince the reader.
13. It should follow the logical order of the original text.
14. It may use connectors such as *however, therefore, as a result* to link ideas logically.
15. It must include references to several different sources.

Read the short texts below. Only one of them is a summary (the others may be a scientific description, research report, literature review, abstract, opinion essay). Tick (✓) the correct one.

Text A

This study investigates the relationship between antibiotic misuse and the emergence of resistant bacterial strains. Using data collected from hospitals and community clinics, we identified patterns of overprescription and incomplete treatments. Results indicate a strong correlation between frequent antibiotic exposure and multi-drug resistance. The findings suggest the need for better diagnostic tools and patient awareness campaigns.

Text B

Samples of *E. coli* were cultured in nutrient broth and exposed to three antibiotic concentrations: 0.5 mg/ml, 1 mg/ml, and 2 mg/ml. Colony counts were taken after 24 and 48 hours. The data showed a clear decrease in bacterial growth at higher doses, but resistant colonies persisted in all conditions.

Text C

Many recent studies have focused on the genetic mechanisms behind antibiotic resistance. Smith et al. (2021) identified over 40 genes responsible for drug efflux, while Li and Zhao (2022) emphasized plasmid-mediated transfer between species. Together, these findings suggest that resistance is far more complex than previously thought.

Text D

In my view, the spread of antibiotic resistance proves that people must take personal responsibility for how they use medicine. Governments can make rules, but unless individuals complete a full course of treatment, no laws will work. Public education campaigns are essential if we want to change behaviour effectively.

Text E

The text describes how bacterial resistance develops when antibiotics are used incorrectly or for too short a time. It highlights that misuse allows resistant strains to survive and multiply, spreading through human and animal populations. The author concludes that public education, responsible prescription, and stronger prevention policies are crucial to slow the global rise of antibiotic resistance.

Text F

Antibiotics are substances that kill or slow the growth of bacteria. They are often classified according to their mechanism of action, such as cell wall synthesis inhibition or protein synthesis disruption. The first antibiotic, penicillin, was discovered by Alexander Fleming in 1928 and remains one of the most widely used drugs today.