

Task 1. Match the terms 1-11 with their definitions A-K.

1. global warming	A. the variety of living species in an environment
2. deforestation	B. harmful chemical substances left over from industry
3. biodiversity	C. energy from sources like wind, solar, or water that don't run out
4. sustainable	D. the removal of large areas of forest
5. renewable energy	E. to protect something from damage or decay, especially nature or wildlife
6. extinction	F. using resources in a way that doesn't harm the environment or future generations
7. toxic waste	G. the gradual increase in Earth's surface temperature
8. habitat destruction	H. gases like carbon dioxide that trap heat in the atmosphere
9. wildlife conservation	I. the damage or loss of the natural environment where animals or plants live
10. preserve	J. the complete disappearance of a species
11. greenhouse gases	K. the protection of wild animals and their habitats

Task 2. Read the text below. Choose the most suitable heading for each section (A-D) from the list of headings (1-6) below. There are more headings than sections, so you will not use all of them.

A. Orcas, or killer whales, are flexible in what they eat. The J, K, and L pods in the region mainly feed on fish, especially Chinook salmon, which can make up 90% of their diet. Over the past 50 years, many salmon runs—particularly winter Chinook and coho—have disappeared due to habitat destruction and overfishing. While remaining salmon stocks may still support the whales, the loss of traditional food sources could impact their nutrition and cause them to adjust their travel patterns in search of food. Tagged whales have been observed diving as deep as 800 feet, likely in search of bottomfish like halibut, rockfish, lingcod, and greenling. However, many of these fish species have also been overfished. For example, lingcod numbers have dropped to just 2% of their 1950 population, and some rockfish have vanished entirely, making food scarcer for marine predators like orcas.

B. As top predators, orcas accumulate high levels of toxins from the food chain. Studies of stranded orcas have revealed dangerous amounts of lead, mercury, and other pollutants in their bodies. Industrial waste, abandoned toxic dumps, and ongoing pollution pose serious threats to their survival. Solving this

List of Headings

1. Toxic Exposure
2. Underwater Noise
3. Top Ocean Predators
4. Declining Fish Populations
5. Smog in Large Cities
6. Impact of Boat Traffic

issue requires widespread environmental changes, but orcas—due to their popularity—may inspire efforts to clean up marine ecosystems.

C. The waters around the San Juan Islands are crowded with commercial and recreational boats. This traffic threatens marine animals in several ways: the risk of collisions (even with quiet kayaks), stress from avoiding boats, and breathing polluted air due to exhaust fumes. When whales surface to breathe, they may inhale polluted air instead of clean oxygen, similar to people breathing smog in cities.

D. Noise pollution from boat traffic also harms orcas. These animals rely on sound to communicate, hunt, and navigate. Constant underwater noise may not change their visible behavior but can damage their hearing and reduce overall health. A research project, the SeaSound Remote Sensing Network, is now studying how noise affects orca communication.

Task 3. Read the text below.

Animal migration, however it is defined, goes beyond simple movement. It generally refers to regular, often annual, long-distance journeys made by many individuals of a species and typically rewarded only after reaching a destination. Migration is driven by instinct. Biologist Hugh Dingle outlines five features common to migration: the journey moves animals beyond their normal habitat; it follows a relatively straight path; it includes specific behaviours before and after travel, such as feeding or nesting; it requires a major energy investment; and it involves a strong commitment to the goal, preventing distractions or diversions.

An arctic tern, for example, travels 20,000 km from southern South America to the Arctic and ignores food along the way, unlike gulls that readily accept handouts. The tern resists distraction because it is guided by a larger instinctive purpose: to reach the Arctic breeding ground where it can successfully reproduce. This destination is vital to the tern's role in the species' evolutionary cycle.

Migration is a complex phenomenon, and scientists define it differently depending on the species they study. Joe Berger, who works with American pronghorns, uses a simpler definition: movement from one seasonal home area to another and back again, driven by the search for resources. Zooplankton migrating vertically in the ocean and aphids moving between host plants are also considered migratory, though their behaviours differ greatly. Dingle's more detailed definition accounts for such variation and highlights common patterns, helping researchers understand migration across species. For instance, aphids respond to blue light when preparing to fly and to yellow light when ready to land, while birds fatten up in preparation for migration.

However, human development is disrupting animal migration. The pronghorn, North America's fastest land mammal, migrates seasonally between mountain ranges and windblown plains. Along its route are three narrow bottlenecks, including one just 150 metres wide and filled with private housing. If the pronghorns cannot pass through, they face starvation or death during harsh winters. Their survival depends on these precise routes, which allow them to see and flee predators.

In response, some U.S. land management agencies have begun protecting migration corridors, such as recognizing parts of the pronghorn's route as protected. Yet much of the

bottleneck area lies on private land, beyond federal control. For many species that travel even longer distances and face more dangers, preserving migration routes is even more difficult. Ensuring their continued survival will require cooperation, persistence, and informed conservation strategies, not just for species and habitats, but for their migrational behaviours too.

A. For questions (1 – 5) choose the correct answer (A, B, or C).

1. According to Hugh Dingle, which of the following is not a feature of animal migration?

- a) Movement beyond familiar territory*
- b) Random, zigzag movement*
- c) Strong focus on reaching the destination*

2. Why does the arctic tern ignore food during its long journey?

- a) It is instinctively focused on reaching its breeding ground*
- b) It stores enough fat before migration and doesn't need to eat on the way*
- c) It cannot spot food while flying at high altitudes*

3. What is the main purpose of migration, according to the text?

- a) To avoid predators*
- b) To find new species*
- c) To reproduce successfully in a suitable environment*

4. What makes the pronghorn's migration especially vulnerable?

- a) It happens only at night*
- b) The species forgets the route each year*
- c) It relies on very narrow migration routes*

5. Why are conservation agencies focusing on migration behaviour, not just species?

- a) Migration affects species survival and reproduction*
- b) Behaviour is easier to study*
- c) It helps eliminate invasive species*

B. Decide if the following statements are True or False.

- 6. The arctic tern travels more than 20,000 km during migration.
- 7. Aphids follow the same migration routes each year like pronghorns.
- 8. Light sensitivity plays a role in aphid migration decisions.
- 9. All migration routes in the U.S. are protected by national laws.
- 10. Some conservation agencies now aim to protect migrational behaviour, not just species.

Task 4. Read the text below. For questions (1 – 9) choose the correct answer (A, B, C or D).

A Surprising Discovery

When scientists (1) _____ a strange sound deep in the Pacific Ocean, they initially thought it might have been a mechanical error in their equipment. The sound was low, rhythmic, and difficult to trace. If they (2) _____ the data too quickly, they could have missed something important. However, after thorough investigation, it (3) _____ that the sound came from a previously unknown marine species.

The sound was unlike anything recorded before, and further research (4) _____ if the team hadn't taken the signal seriously. Additional underwater microphones (5) _____ across a wide region to track the creature's movement. Over the next few weeks, the signal (6) _____ in different locations, confirming the animal's mobility.

Experts say the species (7) _____ be a new kind of deep-sea whale, although more evidence is needed. If confirmed, it (8) _____ the first discovery of its kind in decades. A detailed report (9) _____ by the research team and will be published next month.

- | | | | |
|----------------------|-----------------|---------------------|--------------------------------|
| (1) A) have detected | (2) A) analysed | (3) A) was revealed | (4) A) wouldn't have been done |
| B) had analysed | B) detect | B) has revealed | B) won't be done |
| C) analyse | C) detected | C) revealed | C) wasn't done |
| D) were analysing | D) had detected | D) had revealed | D) can't be done |
-
- | | | | | |
|---------------------|---------------------|-------------|-------------------|---------------------|
| (5) A) were placing | (6) A) was detected | (7) A) must | (8) A) would be | (9) A) is writing |
| B) had been placed | B) detected | B) can | B) will have been | B) has been written |
| C) were placed | C) has detected | C) might | C) will be | C) was written |
| D) have placed | D) is detecting | D) will | D) can be | D) is being written |