

REVIEW

Chapter 5 : Lesson 5C

1. Silicon has the following Electron Configuration :

$1s^2 2s^2 2p^6 3s^2 3p^2$

Explain the notation.

The _____ represent the Main Energy Levels and can range from _____ to _____.

The _____ represent the Sub-Levels for each Main Energy Level.

The _____ indicate the Number of Electrons in each Sub-Level.

2. Utilize the Aufbau Principle to find the Electron Configuration for Chlorine.


Chlorine's Atomic Number =

#Protons = #Electrons =

Chlorine is in Period _____ on the Periodic Table.

Chlorine has _____ Main Energy Levels.

Chlorine is in the _____ Block on the Periodic Table.

Using the Aufbau Principle (or “reading” the Periodic Table from left to right) :

The Noble Gas that just before Chlorine on the Periodic Table, is Neon. Use this information to provide a “shorthand” for the Electron Configuration that you figured out above:

3. Utilize the Aufbau Principle to find the Electron Configuration for Calcium.

Calcium's Atomic Number =

#Protons = #Electrons =

Calcium is in Period ____ on the Periodic Table.

Calcium has ____ Main Energy Levels.

Calcium is in the ____ Block on the Periodic Table.


Using the Aufbau Principle (or “reading” the Periodic Table from left to right) :

Provide a “shorthand” for the Electron Configuration that you figured out above:

4. The Electron Configuration for Oxygen is :

$$1s^2 \ 2s^2 \ 2p^4$$

Write this in Orbital Notation using Hund's Rule (you have the exact amount of arrows to drag and drop):

1s

2s

2p

3s

O :

Now provide the “shorthand” Orbital Notation :

2s

2p

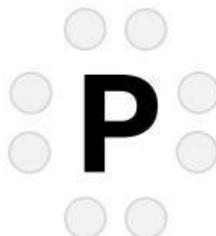
5. Provide the Orbital Notation for Sodium :

Na:

Now provide the “shorthand” Orbital Notation :

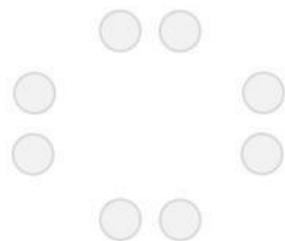
3s

6. Complete the following statements :


The Electron Dot Notation uses dots around an Element's _____. The dots represent _____ Electrons. A max of _____ dots are used. The dots are placed as follows :

- The first 2 dots are placed as a pair (s-Orbital) to the _____ of the Chemical Symbol.
- The 3rd dot is placed at the _____ of the Chemical Symbol (p Orbital).
- The 4th dot is placed to the _____ of the Chemical Symbol (p Orbital).
- The 5th dot is placed _____ the Chemical Symbol (p Orbital).
- The remaining Electrons are now paired up with the 3 unpaired Electrons in the same order until the p-Orbital is filled

7. Provide the Electron Dot Notation for Phosphorus. Only use the required amount of dots. Throw the un-used dots in the trash can :


1 2 3 4 5 6 7 8

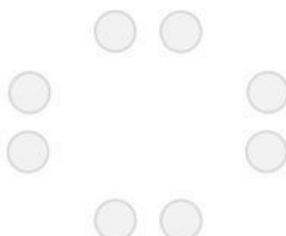
Phosphorus is in Group _____ on the Period Table. This means it has _____ Valence Electrons.

8. Provide the Electron Dot Notation for Argon. Only use the required amount of dots. Throw the un-used dots in the trash can :

1 2 3 4 5 6 7 8

9. Provide the Electron Dot Notation for Helium. Only use the required amount of dots. Throw the un-used dots in the trash can :

1 2 3 4 5 6 7 8



10. Provide the Electron Dot Notation for the element that has the following Electron Notation :

Only use the required amount of dots. Throw the un-used dots in the trash can :

1 2 3 4 5 6 7 8

11. Drag & Drop each of the following items into the correct box :

Has a positive charge.	Forms when an Atom loses an Electron.	$[\text{Mg}]^{2+}$
Has a negative charge.	Forms when an Atom gains an Electron.	$[\text{Cl}]^-$

Anion	Cation