

Cell Membrane Structure and Function – Part 2

1. Decides what can enter or leave the cell.
 - a. Lipids (fats) that make up the cell membrane
 - b. Cell (Plasma) Membrane
 - c. Cell Wall
2. Phospholipids
 - a. Reduces intensity of the cell wall
 - b. Negative feedback system
 - c. Lipids (fats) that make up the cell membrane. They have a polar head with two non-polar tails.
3. Selectively Permeable
 - a. Allows certain things to pass through and prevents other things from passing through
 - b. Does not allow plasma to pass through
 - c. Major structure of the cell
4. Hydrophilic
 - a. Will not mix with water
 - b. Will mix with water; polar phospholipid heads
 - c. Moves cells to the center
5. Hydrophobic
 - a. Will not mix with water; nonpolar phospholipids tails
 - b. Mixes with water
 - c. Does not float
6. Phospholipid bilayer
 - a. Single layer of lipids; head faces backward; no tail
 - b. Helps move molecules across the cell membrane
 - c. Double layer of lipids; heads face outward, tails are in the middle
7. Cholesterol
 - a. Molecules that help to move ions and other molecules across the cell membrane
 - b. Molecules found throughout the membrane; help to stabilize the phospholipids and keep them in position, and help to maintain the cell membrane's flexibility
 - c. Major structure of the cell that helps maintain homeostasis
8. Transport proteins
 - a. A molecule that helps to move ions and other molecules across the cell membrane
 - b. Scattered throughout the cell membrane and responsible for specialized functions
 - c. Composition of the cell membrane
9. Fluid mosaic model
 - a. Packages and ships protein throughout the cell
 - b. Describes the composition of the cell membrane; states that different parts of the membrane can float in a fluid-like space
 - c. Stable internal conditions
10. Homeostasis
 - a. A typical illustration to a negative feedback system
 - b. Creates unstable conditions
 - c. Maintaining stable internal conditions
11. Golgi Apparatus
 - a. packages, modifies, and ships proteins throughout the cell
 - b. Helps maintain homeostasis
 - c. Scattered through the membrane

12. Glycolipid

- a. A carbohydrate-lipid molecule involved in cell to cell recognition
- b. A peripheral protein with a carbohydrate portion
- c. Negative feedback system

13. positive feedback system

- a. The stimulus decreases and shrinks the variables
- b. The stimulus increases in strength and pushes the variable farther from the original point. These are rare and do not require continuous adjustments
- c. Known as the trans-membrane protein

14. negative feedback system

- a. The net effect of the response to the stimulus is to shut off the original stimulus or reduce the intensity. These are more common and require continuous adjusting
- b. Double layer of lipids, heads face outward, tails are in the middle
- c. Lipids (fats)

15. a home central heating and air conditioning unit

- a. Cell Wall
- b. Cell (Plasma) Membrane
- c. A typical analogy/illustration to a negative feedback system

16. Glycoprotein

- a. Packages and ships protein throughout the cell
- b. A peripheral protein with a carbohydrate portion whose main function is helping the cell recognize other cells, and cell to cell communication
- c. A typical illustration to a negative feedback system

17. Integral protein

- a. Also known as a trans-membrane protein, which is located throughout the cell membrane. Functions in transporting materials
- b. Will not mix with water; nonpolar phospholipids tails
- c. An example of positive feedback

18. Cell (Plasma) Membrane

- a. Lipids (fats)
- b. The major structure of the cell that helps maintain homeostasis in the cell
- c. Smallest part of the cell

19. Giving birth

- a. One of the two examples of positive feedback system in human beings
- b. Helps maintain homeostasis
- c. Stable internal conditions

20. Proteins

- a. Mixes with water
- b. Helps to maintain homeostasis
- c. Scattered throughout the cell (plasma) membrane and responsible for most of the specialized functions of the membrane.