NON-CYCLIC PHOTOPHOSPHORYLATION

- Photoexcited electrons from primary electron acceptor are passed through another ETC; <u>Ferredoxin</u> (Fd).
- Electrons are then passed to NADP+.
- NADP+ reductase will catalyze the transfer of electrons from Fd to NADP+
- Reduction of NADP+ to NADPH + H+
- Photolysis of water occur.
- Water molecule splits into two <u>hydrogen</u> ions and <u>one</u> oxygen atom.
- The oxygen atom will immediately combine with another oxygen atom to form an oxygen molecule

- Photoactivation also occur at photosystem I.
- Electron hole at photosystem I is replaced by electron from 1st ETC.
- Each photoexcited electron (2e-) are passed from primary electron acceptor to PS I via electron transport chain (ETC).
- It consists of <u>Plastoquinone</u> (Pq), <u>Cytochrome complex</u>, and <u>Plastocyanin</u> (Pc).

- P680 undergo photoactivation.
- It releases photoexcited electrons to **primary electron** acceptor.
- Thus, creates electron deficiency in PS II
- As electron is passes through the ETC, this exergonic reaction will release energy.
- The energy released is used to form <u>ATP</u> from ADP + Pi

