

Lembar Kerja Peserta Didik (LKPD) HUKUM LENZ DALAM INDUKSI ELEKTROMAGNETIK

SMA Kelas XII

Nama Anggota Kelompok:

HILIVEWORKSHEETS

- 1.
- 2.
- 3.
- 4.
- 5.

Kelas:

PERCOBAAN HUKUM LENZ DALAM INDUKSI ELEKTROMAGNETIK

TUJUAN

- I.Peserta didik mampu menjelaskan hubungan antara arah gerak magnet, perubahan medan magnet, dan arah arus induksi sesuai Hukum Lenz.
- 2.Peserta didik mampu menerapkan prinsip Hukum Lenz berdasarkan hasil pengamatan arah arus induksi dan perubahan medan magnet.
- 3.Peserta didik mampu menganalisis perubahan arah arus induksi yang terjadi akibat pergerakan magnet terhadap kumparan menggunakan simulasi PhET.

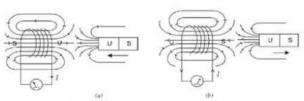
DASAR TEORI

Induksi elektromagnetik adalah peristiwa munculnya arus listrik pada suatu penghantar akibat adanya perubahan medan magnet di sekitarnya. Faraday menyatakan bahwa arus listrik akan diinduksi dalam sebuah kumparan kawat jika terdapat perubahan fluks magnetik yang melaluinya. Fluks magnetik (Φ) adalah besaran yang menunjukkan banyaknya garis gaya magnet yang menembus suatu bidang. Nilai fluks magnetik ditentukan oleh:

 $\Phi = BA \cos \theta$

Dimana:

- Φ = Fluks magnet
- B = Induksi magnet
- A = Luas bidang
- θ = Sudut antara arah induksi magnet B dengan arah garis normal bidang



Hukum Lenz menyatakan bahwa:

"Arah arus induksi yang ditimbulkan oleh perubahan medan magnet selalu sedemikian rupa sehingga medan magnet induksi yang dihasilkan menentang penyebabnya."

Perhatikan gambar berikut.

Hukum Lenz

Arah arus induksi berdasarkan hukum Lenz (a) magnet mendekati kumparan,
(b) magnet menjauhi kumparan.

Gambar 1. Magnet mendekati dan menjauhi kumparan (Sumber: https://rb.gy/zaofd2)

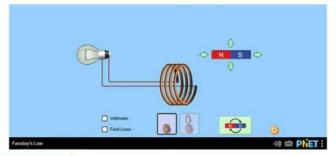
Ketika kedudukan magnet dan kumparan itu diam, maka tentu saja tidak ada perubahan fluks magnet dalam kumparan tersebut. Maka dari itu, arah fluks induksi haruslah berlawanan dengan fluks magnetik, supaya fluks total yang dilingkupi kumparan akan selalu konstan. Begitu pula ketika magnet dijauhkan dari kumparan, maka akan terjadi pengurangan fluks magnetik dalam kumparan itu sendiri.

ALAT & BAHAN

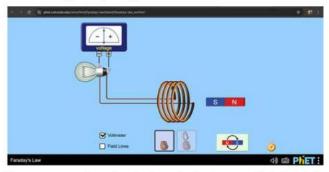
- 1. Laptop atau PC dengan koneksi internet
- 2. Simulasi PhET: Faraday's Electromagnetic Lab
- 3. Kertas HVS
- 4. Alat tulis

LANGKAH PERSIAPAN

• Buka software PhET Simulation di komputer/laptop.



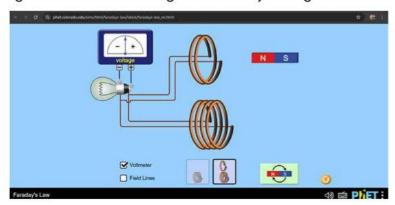
• Pilih mode Lab dan akan mncul seperti gambar dibawah ini.

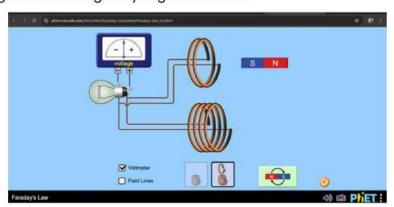

LANGKAH KEGIATAN

Percobaan 1: Percobaan dengan 4 lilitan kumparan.

• Centang volmeter untuk mengetahui arah jarum galvanometer.

- Gerakkan magnet ke dalam kumparan secara perlahan.
- Amati jarum galvanometer dan catat arah simpangannya.
- Lalu tarik magnet keluar secara perlahan dan amati kembali.
- Lakukan kembali langkah 1 sampai 3 dengan gerakkan yang lebih cepat.
- Kemudian putar kutub magnet seperti gambar dibawah ini, lalu ulangi kembali langkah yang ada diatas.

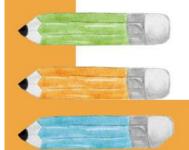

Catat hasil pengamatan ke dalam tabel yang telah disiapkan.



• Centang volmeter untuk mengetahui arah jarum galvanometer.

- Gerakkan magnet ke dalam kumparan secara perlahan.
- Amati jarum galvanometer dan catat arah simpangannya.
- Lalu tarik magnet keluar secara perlahan dan amati kembali.
- Lakukan kembali langkah 1 sampai 3 dengan gerakkan yang lebih cepat.
- Kemudian putar kutub magnet seperti gambar dibawah ini lalu ulangi kembali langkah yang ada diatas.

• Catat hasil pengamatan ke dalam tabel yang telah disiapkan.


HASIL PENGAMATAN

Percobaan 1: Percobaan dengan 4 lilitan kumparan.

No	<u>Gerakkan</u> Magnet	Kecepatan Gerakkan Magnet	Arah Jarum Galvanometer	Cahaya <u>Lampu</u>
1.	Dimasukkan ke dalam	Lambat		
	kumparan.	Cepat		
2.	Ditarik keluar kumparan.	Lambat		
		Cepat		
3.	Dimasukkan dengan kutub terbalik.	Lambat		
		Cepat		

Percobaan 2: Percobaan dengan 2 lilitan kumparan.

No	<u>Gerakkan</u> Magnet	Kecepatan Gerakkan Magnet	Arah Jarum Galvanometer	Cahaya <u>Lampu</u>
1.	Dimasukkan ke dalam	Lambat		
	kumparan.	Cepat		
2.	Ditarik keluar kumparan.	Lambat		
		Cepat		
3.	Dimasukkan dengan kutub terbalik.	Lambat		
		Cepat		

ANALISIS

Percobaan 1: Percobaan dengan 4 lilitan kumparan.

- Apa yang terjadi pada jarum galvanometer saat magnet digerakkan perlahan masuk ke dalam kumparan?
- Bagaimana perbedaan simpangan jarum galvanometer saat magnet digerakkan cepat dibandingkan digerakkan secara perlahan?
- Apa yang terjadi pada arah simpangan galvanomter ketida kutub magnet dibalik saat dimasukkan ke dalam kumparan?

Percobaan 2 : Percobaan dengan 2 lilitan kumparan.

- Bandingkan simpangan jarum galvanometer saat magnet digerakkan dengan kecepatan yang sama pada percobaan 1 dan percobaan 2. Apa perbedaannya?
- Jelaskan pengaruh jumlah lilitan kumparan terhadap besar arus induksi yang dihasilkan!
- Bagaimana arah simpangan jarum galvanometer saat magnet dengan kutub dibalik dimasukkan ke dalam kumparan? Apa perbedaan dengan percobaan 1?

KESIMPULAN

SOAL

1. Jelaskan hubungan antara kecepatan gerakan magnet dan beasr simpangan jarum galvanometer berdasarkan hasil percobaan!

2. Bagaimana pengaruh jumlah lilitan kumparan terhadap besar arus induksi yang timbul? Jelaskan berdasarkan hasil pengamatanmu!

3. Apabila kutub magnet dibalik, bagaimana arah arus induksinya berubah? Sebutkan prinsip fisika yang menjelaskannya!

4. Apa yang terjadi saat magnet dan kumparan dalam kondisi diam? Mengapa tidak timbul arus induksinya?

5. Jelaskan bagaimana Hukum Lenz dapat dibuktikan melalui percobaan ini!

