

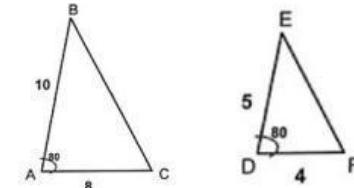
ASSESSMENT

Multiple Choice: Read and analyze the following problems and choose the letter of the correct answer.

1. _____ are triangles with congruent corresponding angles and proportional corresponding sides.

- a. Regular triangles
- b. Acute Triangles
- c. Congruent triangles
- d. Similar Triangles

2. Which of the following triangles will always be similar?


- a. Two acute triangle
- b. Two equiangular triangle
- c. two obtuse triangle
- d. none

3. What triangle similarity is this, "Two triangles are similar if the corresponding sides of two triangles are in proportion".

- a. SAS similarity theorem
- b. AA similarity theorem
- c. SSS similarity theorem
- d. No similarity

4. Using the figure at the right, $\frac{AB}{DE} = \frac{AC}{DF}$; $\angle A \cong \angle D$, then what similarity theorem will show that $\Delta ABC \sim \Delta DEF$?

- a. SAS similarity
- b. AA similarity
- c. SSS similarity
- d. No similarity

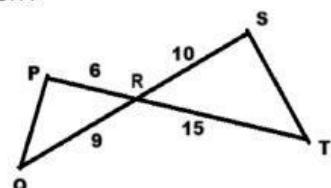
5. If the two angles of one triangle are congruent to the two angles of another triangle, then the two triangles are similar

by _____.

- a. SAS similarity theorem
- b. AA similarity theorem
- c. SSS similarity theorem
- d. No similarity

For items 6-8. Refer to the figure on the right.

6. Given that $\Delta PQR \sim \Delta STR$, which of the following is the correct proportion?

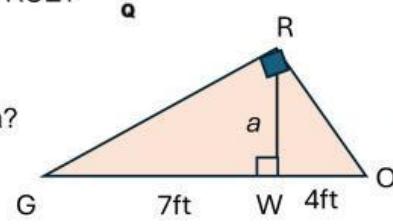

- a. $\frac{PR}{RS} = \frac{RQ}{RT}$
- b. $\frac{PQ}{RS} = \frac{RQ}{ST}$
- c. $\frac{PR}{RQ} = \frac{RT}{RS}$
- d. $\frac{PR}{RT} = \frac{RQ}{RS}$

7. Using the figure at the right, do ΔPQR and ΔSTR be similar?

- a. similar by SAS
- b. similar by SSS
- c. similar by AA
- d. Not similar

8. If $\Delta PQR \sim \Delta STR$, then which of the following could NOT be TRUE?

- a. $\angle Q \cong \angle S$
- b. $\angle R \cong \angle R$
- c. $\angle P \cong \angle T$
- d. $\angle Q \cong \angle R$


For items 9-10. Refer to triangle ABC at the right.

9. Which of the following could be the length of altitude RW or a?

- a. $7\sqrt{4}$
- b. $2\sqrt{7}$
- c. $7\sqrt{2}$
- d. $4\sqrt{7}$

10. Which of the following could be the length of OR?

- a. $11\sqrt{4}$
- b. $2\sqrt{11}$
- c. $11\sqrt{2}$
- d. $4\sqrt{11}$

